ntrernatione

Technical Note 503 « August 1992

Fundamentals of |
- Deductive Program Synthesis

Prepared by:

Richard Waldinger
Artificial Intelligence Center
Computing and Engineering Sciences Division

Zohar Manna

Computer Science Department
Stanford University

333 Ravenswood Avenue © Menlo Park, CA84025:3493 (415)326-6200 o FAX: (415)326-5512 Telex:334486

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
AUG 1992 2. REPORT TYPE 00-08-1992 to 00-08-1992
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Fundamentals of Deductive Program Synthesis £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 33
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 18, NO. 8. AUGUST 1992

Fundamentals of Deductive Program Synthesis

Zohar Manna and Richard Waldinger

Abstract—An informal tutorial is presented for program syn-
thesis, with an emphasis on deductive methods. According to this
approach, to construct a program meeling a given specification,
we prove the existence of an object meeting the specified con-
ditions. The proof is restricted to be sufficiently constructive,
in the sense that, in establishing the existence of the desired
output, the proof is forced to indicate a computational method
for finding it. That method becomes the hasis for a program
that can be extracted from the proof. The exposition is based
on the deductive-tahleau system, a theorem-proving framework
particularly suitable for program synthesis. The system includes a
nonclausal resolution rule, facilities for reasoning about equality,
and a well-founded induction rule.

Index Terms—Automated deduction, deductive tahleau, formal
methods, program synthesis, program transformation, specifica-
tions, theorem proving.

I. INTRODUCTION

HIS is an introduction to program synthesis, the deriva-
tion of a program to meet a given specification. It focuses
on the deductive approach, in which the derivation task is
regarded as a problem of proving a mathematical theorem.
Let us outline this approach in very general terms. We
here construct only applicative (functional) programs. We are
given a specification that describes a relation between the
input and output of the desired program. The specification
does not necessarily suggest any methoed for computing the
output. To construct a program that meets the specification,
we prove the existence, for any input object, of an cutput
object that satisfies the specified conditions. The proof is
conducted in a background theory that expresses the known
properties of the subject domain and describes the primitives
of the programming language. The proof is restricted to be
sufficiently constructive so that, to establish the existence
of a satisfactory output object, it is forced to indicate a
computational method for finding one. That method becomes
the basis for a program that can be extracted from the proof.

Manuscript received May 3, 1991; revised February 3, 1992. Recom-
mended by D. Bjorner, This work was supported in part by Lhe National
Science Foundation through grants CCR-89-04809, CCR-89-11512, and CCR-
89-13641, by the Defense Advanced Research Projects Agency under Contract
No. NAG2-703, and by the U.S. Air Force Office of Scientific Research under
Contract No. AFOSR-90-0057. A preliminary version of portions of this paper
appears in Logic, Algebra, and Computation W. Meixner, Ed., NATO ASI
Scries, Series F: Computer and Systems Sciences, Springer-Verlag, Berlin,
1991.

Z. Manna is with the Computer Science Department, Stanford University,
Palo Alio. CA 94305 and the Computer Science Department, Weizmann
Institule of Science, Rehovol, Isracl.

R. Waldinger is with the Artificial Intelligence Center, SRI Inicrnational,
Menlo Park, CA 94025 and the Computer Science Department, Stanford
University, Palo Alto, CA 94305.

iEEE Log Number 9107763.

In principle, many theorem-proving methods can be adapted
for program synthesis. We have developed a proof system,
called the deductive tableau, that is specifically intended for
this purpose.

In this paper, we begin by defining program synthesis and
relating it to other software development technology. We then
introduce the deductive-tableau proof system and show how
to extract programs from tableau proofs.

A. Specifications

Program synthesis begins with a specification; in our case,
this is a representation of the relationship between the input
and output. A specification should be a description of the
purpose or expected behavior of the desired program; ideally,
it is close to the intentions of the users of the system. A
good specification is clear and readable; we do not care if it
describes an efficient computation, or indeed any computation
at all. A program, on the other hand, js primarily a description
of a computation, preferably an efficient one.

While many languages have been proposed for specification,
we have settfed on logic in our own work, because it is
quite general and appropriate for deductive methods. If other
languages are more appropriate for particular subject domains,
it is plausible that they be translated into logic.

Let us give logical specifications for some familiar pro-
grams.

Example (Sorting Specification)

Suppose we would like our programs to sort a list of
numbers. Then we may be give the specification:

sort(l) <= { find z such that
perm{l, z) A ord(z).

This specification is presented in a background theory of lists
of numbers. For a given input object, the list {, the program
must return an output object, the list z, satisfying the condition
perm(l, z),i.e., that z is a permutation of /, and the condition
ord(z), i.e., that z is in nondecreasing order. The background
theory provides the meaning for the constructs perm and
ord. 0

Note that the specification provides a clear statement of the
purpose of a sorting program, but does not describe how we
want the list to be sorted. A sorting program itself, such as
guicksort or mergesort, does describe how the computation
is to be performed, but does not state the purpose of the
program.

Example (Square-Root Specification)

Suppose we want a program to find a rational approximation
10 the square root of a nonnegative rationat; then we may give

0098-5589/92803.00 © 1992 IEEE

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 675

the specification

find z such that
ife>0

sqgri(r,e) <
then 22 <r A r < (z+¢)°

Here, we are given the nonnegative rational » and positive
rational error tolerance ¢ as inputs. Our desired output z is
less than or equal to /7; that is, z2 < 7, but z + € is strictly
greater than +/7; that is, < (z + €)°. In other words, /7 lies
in the half-open interval [z,z + €):

o
\

b

[
{
<

Our background theory is that of the nonnegative rationals. O
In general, we shall be dealing with specifications of the
form

f(a) < find z such that Q[a, 2]

where QJa, z] is a sentence of the background theory.

B. Deductive Sofrware Technologies

Program synthesis is one of several methods to assist in soft-
ware development that is amenable to deductive techniques.
Here, we mention some of the other deductive software-
development methods, with representative references:

* Program Verification. Proving that a given program
meels a given specification [5]. This is the oldest of the
deductive methods.

* Program Transformation. Transforming a given program
into a more efficient, perhaps less understandable equiv-
alent [3].

* Rapid Prototyping. Assuring a potential user that a spec-
ification actually does agree with his expectations [15].

* Logic Programming. Executing a program expressed in
logic [20].

* Testing. Exhibiting inputs that cause a program to fail
to meet its specification [42].

* Modification. Altering a given program to reflect
changes in its specification or environment [9].

In a somewhat different category, we may consider a variety
of knowledge-based software development methods (e.g., [40])
which rely on imitating the techniques of the experienced
programmer. Automated deduction is exploited here in an
auxiliary role; the programming process is not regarded as
a task of proving a theorem, but as a task of transformation
with many deductive subtasks.

Many researchers in formal methods for software devel-
opment {e.g., [10]) do regard programming as primarily a
deductive process, but are not at all concerned with automating
the task; rather, they intend to provide intellectual tools for
the programmer.

These methods all rely on deductive techniques, and several
of them are less ambitious than full program synthesis. By
developing more powerful theorom-proving techniques that
are specialized to software-engineering application, we can
make progress in several of these arcas at once.

C. Outline of Deductive Program Synthesis

In this section we give 2 more detailed outline of program
synthesis and its relation to mathematical proofs.
In general, we are given a specification

f(a) < find z such that Q[a, z).
The theorem corresponding to this specification is
(Ya)(32)Ola, 2]

In other words, for every input e, there exists an output z
that satisfies the input—output relation Q[a, z]). The proof is
restricted to be sufficiently constructive to indicate a method
for finding z in terms of a. That method is expressed by a
single term £[a}, which can be extracted from the proof. The
term indicates which substitutions were made for z 1o allow
the proof to go through. The program we produce is then

fla) < t[a)].

We describe the method as if there were only one input and
output, but in fact we can have several of each. If there is
more than one output, we define a separate function for each.
In the following example, there are two outputs.

Example (Front{Last Derivation Outline)

In the theory of finite strings, we would like to construct a
program to find, for a given nonempty string, s, two outputs:
the last character last(s) of s, and the string front(s) of all
but the fast character of s. For example, if s is the string BaDa,
Sfromi(s) is the string BAD and last(s) is the character .

The program may be specified as

{front(s), last(c)) < find {z), z2) such that
[if ~(s = A) }

then char(z) As =z * 29

In other words, s is to be decomposed into the concatenation
z) * zg of two strings, z; and zo, where z; consists of a single
character. Here, A is the empty string. Note that characters
are regarded as strings.

The theorem corresponding to the specification is

if ~ (s = A)]

then char(z) As = z; = 2o

(¥s){3zy, z2) [

The proof is restricted to be sufficiently constructive to indicate
a method for finding z; and zs. In this case, the program we
shall extract from the proof is

if char(s)
front(s) <= { then A
else head(s) - front (tail(s))
if char(s)
last(s) «= < thens

else last (tail(s)).

Here, heed(s) and teil(s) are, respectively, the first character
and the string of all but the first character of the nonempty
string s. Also, char(s) is true if s consists of a single characler.
If ¢ is a character and s is a string, the prefix function c - s
yields the result of prefixing c to s. Thus ¢ - s is the same as

676 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 18, NO. 8. AUGUST 1992

¢+ 3, but ¢- s is a basic function defined only for a character
and a string. The concatenation function s; * s is defined in
terms of the prefix function, for any two strings s; and s,. O

The structure of the proof of the theorem determines the
structure of the program we extract. In particular, a case
analysis in the proof corresponds to the formation of a con-
ditional or test in the program. The use of the principle
of mathematical induction in the proof coincides with the
appearance of recursion or other repetitive constructs in the
program. If the proof requires some lemmas, the program
will invoke some auxiliary subprograms. Of course, different
proofs of the theorem may lead to different programs, some
of which may be preferable to others.

The phrasing of a specification as a theorem is quite
straightforward. If a proof is sufficiently constructive, the
extraction of the program is purely mechanical. Thus the
main problem of deductive program synthesis is finding a
sufficiently constructive proof of the theorem. We now turn
our attention to the ficld of theorem proving, or automated
deduction.

D. Theorem Proving

We may distinguish between decision procedures, which
guarantee success at proving theorems within a particular class,
and heuristic methods, whose success is not guaranteed. We
may also distinguish between automatic systems, which act
without human intervention, and interactive systems, which
require it.

The theories of interest here, such as those of the nonneg-
ative integers, strings, and trees, are undecidable; no decision
procedures exist. We know of no way of restricting the spec-
ification or programming language to ensure the successful
completion of a proof without also restricting ourselves to a
trivial class of specifications and programs. We assume then
that our theorem prover will employ heuristic methods or rely
on human guidance—probably both.

We have distinguished between automatic and interactive
systems, but this distinction is not sharp. implementers of
interactive systems introduce automatic features to reduce
the burden on the user. At the same time, implementers of
automatic systems introduce interactive controls so the user
can assist the system to discover proofs that are too difficuit
to be found automatically.

Although interactive systems are amenable to gradual au-
tomation, most of them are intended to help the user check
and flesh out a proof already cutlined by hand, rather than to
discover a new proof. The logical frameworks embedded in
the automatic systems are more conducive to proof discovery.

The emphasis of this paper, however, is on neither the
heuristic aspects of theorem proving nor on the design of
interactive mechanisms, but rather on the development of
a logical framework sufficiently powerful to facilitate the
discovery and succinct presentation of nontrivial derivation
proofs.

Let us consider some of the theorem-proving systems that
have already been developed to see how appropriate they
are for our purpose. We discuss some automatic and some
interactive systems.

We may classify automatic theorem provers according to
the logical theories on which they focus:

* Predicate Logic with Equaliry. Much work has exploited
the resolution [36] and paramodulation [46] inference
rules for these theories. Theorem provers based on these
ideas, such as those developed at the Argonne National
Laboratory [21}, regularly settle open questions in math-
ematics and logic {47], admitiedly in areas in which
human intuition is weak, such as combinatory logic and
equivalential calculus. Recent theorem-proving systems
for predicate logic with equality have employed term-
rewriting systems [19] and connection methods [1), [2],
rather than resolution and paramodulation, as the primary
inference technique.

 Theories with Induction. A separate body of work fo-
cuses on proofs requiring the principle of mathematical
induction. The Boyer—Moore system [5] has been mo-
tivated by and applied to large problems in program
verification, but has also been applied to the interactive
reconstruction of large proofs in mathematics and logic,
such as the Godel Incompleteness theorem [41].

All of this work is relevant to program synthesis, yet it
is difficult to find an existing system with all the features
we need. We require the ability to prove theorems involving
the quartifiers and connectives of first-order logic and the
mathematical-induction principle. The Argonne systems, for
example, do well with pure predicate logic, but have no
facilities for inductive proofs. The Boyer—Moore system,
which specializes in proof by induction, does not prove
theorems with existential quantifiers.

Many of the interactive systems have grown out of LCF
[14], which was based on Scott's “Logic of Computable
Functions.” Although these systems are under user control,
they provide the capabilily to encode commonly repeated
patterns of inference as tactics. The system lsabelle [34] arises
from LCF, but is generic; that is, it allows us to describe a
new logic, then prove theorems in that logic (cf. [13]).

Of particular relevance to program synthesis is the develop-
ment of interactive systems to prove theorems in constructive
logics. The Nuprl system [7] (cf. [8], [37], [17]) is based
on Martin—L&f’s constructive logic [30], [33] and has been
applied to problems in program derivation as well as mathe-
matics.

Although a derivation proof must be sufficiently construc-
tive to allow us to extract a program, it does not need to be
carried out in a constructive logic. Typically, most of a deriva-
tion proof has no bearing on the program we extract; it deals
with showing that a program fragment extracted from some
other part of the proof satisfies some additional conditions.
Since many intuitively natural steps are not constructive, it is
too constraining to carry out the entire derivation proof in a
constructive logic. In our treatment, we adopt a classical logic,
restricting it to be constructive only when necessary.

Most theorem-proving systems can be adapted to program
synthesis and other software-engineering applications. The
deductive framework we employ in this paper is a hybrid;
it incorporates ideas from resolution and inductive theorem

MANNA & WAI DINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 677

proving, and is intended for both interactive and automatic
implementation. An interactive synthesis system, based on the
theorem prover described in [6], has been implemented.

1. PRELIMINARIES

In this section we introduce some formal preliminaries. We
are a bit brisk here; the section may be skimmed by those
familiar with these notions. Those wishing a more detailed
explanation may refer to {25] and [29].

A. Language

We first define the expressions of our language, which
consist of the terms and the sentences.

The terms include the constants ¢, b, ¢, ... and the variables
u,v,w,.... Terms may be constructed by the repeated ap-
plication of function symbols f,g,k,... to other terms. For
example, f(a, g(e,x)) is a term. Also, if F is a sentence and
s and ¢ are terms, the conditional (if F then selset) is a
term; we call the i f-then-else operator a term constructor.

Alomic sentences (or atoms) are constructed by apply-
ing predicate symbols p,q,7,... to terms. For example,
plu, fla, g(e,))) is an atomic sentence. We allow both prefix
and infix notations for function and predicate symbols. We
include the equality symbol = as a predicate symbol.

Sentences include the truth symbols frue and false and the
atomic sentences; they may be constructed by the repeated
application of the connectlives A, V,—,... and the quantifiers
(¥z) and (3z) to other sentences. We use the notation 2 f-
then for implication in place of the conventional arrow
or horseshoe. We include a conditional connective if-then-
else; in other words, if F,G, and H are sentences then
(if F then G else M) is also a sentence. We rely on context to
distinguish between the conditional connective and conditional
term constructor.

A closed expression contains no free (unquantified) vari-
ables. A ground expression contains no variables at all. A
herbrand expression is ground and contains neither connec-
tives, term constructors nor equality symbols; thus g(e) is a
herbrand term, and p(e, f(a, b)) is a herbrand atom.

B. Interpretation and Truth

The truth of a sentence is defined only with respect to a
particular interpretation. Intuitively speaking, we may think of
an interpretation as a situation or case. We adopt the Herbrand
notion and define an interpretation as a finite or infinite set
of herbrand atoms. Informally, we think of the elements of
the interpretation as a complete list of the herbrand atoms that
are true in the comresponding situation. The truth-value of any
closed sentence with respect to the interpretation is determined
by the recursive application of the following semantic rules:
* A herbrand atom P is true under an interpretation I if
Pel

» If a sentence is not closed, we do not define its truth-
value. Thus we do not say whether p{z) is true under
{p(a)}. Henceforth in this section we speak only of closed
Sentences.

* A closed sentence (F A G) is true under I if F and G are
both true under 7; similarly for the other connectives.

* A closed sentence (3z)F(z] is true under Z if there is
a herbrand term ¢ such that F[t] is true under Z; here,
Ft] is the result of replacing all free occurrences of z in
F[z] with t, For example, the sentence (3z)p(z) is true
under the interpretation {p{a)} because & is a herbrand
term and p{e) is true under {p(e)}.

* A closed sentence (Vz)F|z] is true under Z if, for every

herbrand term ¢, F[¢] is true under Z.

If (if P then s else t) is a closed term, a closed sentence

F[if Pthen selset] is true under I if the sentence

(zf P then F[s] else F[t]) is true under I.

* For herbrand terms s and ¢, 3 = ¢ is true under T if, for
each herbrand atom P{s), P(s) € I if and only if P{t) €
T. Here, P{t) is obtained from P{s) by replacing exactly
one free occurrence of s with £, This holds only when s
and t are indistinguishable under Z. For example, ¢ = &
is true under the interpretation {p(a),p(b)}, but false
under the interpretation {g(e,b), g{e,a), g(b,b)}; qla.a)
belongs to the latter interpretation, but g{b,e) does not.
In general, if a closed sentence s = ¢ is true under Z,
we shall also say that s = ¢ under T or that s and ¢ are
equal under .

Henceforth we will ofien say “sentence” when we mean
“closed sentence”.

C. Models and Theories

An interpretation I is a model for a finite or infinite set
of (closed) sentences S if every sentence in S is true under
I. Thus the interpretations {p(e)} and {p(b)} are models
for the set of sentences {(3z)p(z), p(e) Vv p(b)}. but the
interpretation {p(b)} is not a model for the set of sentences
{pla)}.

A set of sentences S implies a sentence F if F is true
under every model for S. For example, the set {p(a)} implies
the sentence (3z)p(z). The theory TH defined by a set of
sentences S is the set of all closed sentences implied by S;
this is also called the deductive closure of S. We say that the
sentences belonging to TH are valid in the theory. We call &
the set of axioms for the theory TH.

The valid sentences of a theory are true under every model
for the theory. The contradictory sentences of the theory are
defined to be those that are false under every model for the
theory. A sentence F is contradictory in the theory if and only
if its negation —F is valid in the theory.

The theory defined by the empty set { } of axioms is
predicate logic, PL. For example, (3z)p(z) Vv (Vz)-p(z) is
a valid sentence of predicate logic. Any interpretation is a
model for predicate logic.

The total reflexive theory TR is defined by the following
two axioms:

(Vu)[u = u| (reflezivity)
(Vu)(Vo)lu = v V v = u] (totality).

By convention, we omit outermost universal guantifiers from
axioms. Thus we may write the axioms for the total reflexive

678 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 8, AUGUST 1992

theory TR as

w = u {reflezivity)
urwvVuo>u (totality).

The sentence
(Vz)(Vy)(3z)z =z A 2= ¥

is valid in this theory. O

When we say that a (closed) sentence is valid, without
specifying a theory, we mean that it is valid in predicate logic.
If a sentence is valid (in predicate logic), it is valid in any
theory.

The models for a theory are the same as the models for its
axjoms. Intuitively speaking, a model for a theory corresponds
10 a situation that could possibly happen. For example, an
interpretation that contains neither ¢ > b nor b > a is not a
mode] for the total reflexive theory TR, because it violates the
totality axiom.

D. Substiturions

A substitution is a set {z1 «— t1,...,Z, + t,} of replace-
ment pairs z; < t;, where the z; are distinct variables,
the t; are terms, and each z; is distinct from its corre-
sponding t;. Thus {x — y, y — g{z)} is a substitution, but
{#z « a, £ — b} and {z + z} are not. The empty substitution
{} contains no replacement pairs.

If e is an expression and & : {zq «— t1,...,2, — t,} is a
substitution, then efl, the result of applying 8 to ¢, is obtained
by safely replacing each free occurrence of z; in e with
the corresponding term t;. (The safety condition requires that
certain quantified variables y in e be given a new name y'
if some of the terms t; also contain occurrences of y. For
details, see [25].) Applying the empty substitution leaves an
expression unchanged; that is, e{ } = e for all expressions e.
We say that any expression ef is an instance of e.

The composition 8A of two substitutions & and A is a
substitution with the property that e(8A) = (e@)X for all
expressions e. For example,

{t—yHy+—a}={z—a,y+a}
{z+~yHy +~z} = {y — =}
{z —yHz—a}={z —y}.

Composition is associative but not commutative. The empty
substitution is an identity under composition.

A substitution is a permutation if the terms ¢; are the same as
the variables z;, in some order. Thus {z — vy, y « 2, 2 + T}
is a permutation; {z + y} is not. Permutations are the substi-
tutions with inverses: Thal is, « is a permutation if and only
if there is some substitution 7~ such that 7=~ = { }.

A substitution # is more general than a substitution ¢ if
there exists a substitution A such that

A = ¢.

For example, {z +— y} is more general than {z — @, y — a},
because {z — a, y — a} = {z — y}{y — a}. It foliows that
any substitution £ is more general than itself and the empty
substitution { } is more general than any substitution 8.

A substitution 8 is a unifier of two expressions d and e if
d8 and e are syntactically identical, i.e., if

df = ed.

For example, {z «— a, y — b} is a unifier of the two expres-
sions p(z,b) and p(a,y). If two expressions have a unifier,
they are said to be unifiable.

A unifier of d and e is most-general if it is more general
than any unifier of d and e. For example, {z — y} and
{y «— z} are most-general unifiers of = and y. The substitution
@:{z — a, y + a} is a unifier of = and y, and both {z — y}
and {y «— z} are more general than 4.

A unification algorithm is a procedure for testing whether
two expressions are unifiable. If so, it returns a most-general
unifier; otherwise, it returns a special object #il, which is
distinct from any substitution.

IIl. THE DEDUCTIVE TABLEAU

Our proofs are represented by a two-dimensional structure,
the deductive tableau. Each row in a tableau contains a
sentence, either an assertion or a goal, and an optional term,
the output entry. In general, in a given row, there may be one
output entry for each output of the desired program. Thus,
typical rows in a tableau have the following form:

assertions goals fila) fula)
G ty i, '

output columns

The proof itself is represented by the assertions and goals of
the tableau; the output entries serve for extracting a program
from the proof. Usually, we speak as if our tableaux have only
a single output column, but in fact the results apply when there
are several output columns as well.

Before we describe the meaning of a tableau, let us look
at an example.

Example (Deductive Tableau)

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 67%

assertions goals ul{ay. az)
s>xayAz>rap =
U
a) * az a)
ifa; raz
true then aj
else ao

This tableau is part of the derivation of a program to find
an upper bound for two objects a; and a; in the tota! reflexive
theory TR. O

A. Suiting a Tableau

We have said that a tableau may represent a proof and
a derivation; it may also be regarded as a specification.
Specifications describe sets of permissible output objects,
which are identified with ground terms. In this section, we
gradually define what it means for a ground term to satisfy
a tableau.

We first restrict our attention to a particular interpretation
and a single row of a tableau.

Definition (Suiting a Row)

A closed term £ suits a row (or, respectively, [1¢]s])
under an interpretation T if, for some substitution A, the
following two conditions are satisfied:

* Truth condition. The sentence A) is closed and false
under Z (or, respectively, the sentence ¢ A is closed and
true under 7).

* Quiput condition. If there is an output entry s, the term
sM is closed and sX equals ¢ under Z.

In case the output entry s is absent, the output condition holds
vacuously. We call A a suiting substitution. 0
Example (Suiting a Row)
If @) > ap is true under an interpretation I, the term a,
suits the row

under Z. To see this, we take the suiting substitution A to be
{z «— ay}. The truth condition holds because (z > a3)A, that
is, a; > ap, is closed and true under Z. The output condition
holds because z), that is, a1, is closed and equal to a; under Z.

In this example, the term a; is actually identical to the

instance z of the output entry z. The conditional term
(if a1 = ao then) else ay) is also equal to this instance of 2
under Z, because a; > ap is true. Therefore, even though the
two terms are not identical, the conditional term (if a; > a
then a, else a3) also suits this row under . O

If a row has no output entry, the output condition for suiting
a row always holds. This means that, under an interpretation, if
some closed term suits the row, then any closed term suits the
row, since the truth condition does not depend on the term. In
a sense, a missing output entry may be thought of as a “don’t
care” condition.

We have defined what it means to suit a single row; now
we say what it means to snit an entire tableau.

Definition (Suiting a Tableau)

Under an interpretation, a closed term suits a tableau if it
suits some row of the tableau, O

If we think of the tableau as a specification and the in-
terpretation as a situation or case, the closed terms that suit
the tableau coincide with the outputs that will meet the

specification in that case.
Example (Suiting a Tableau)

Let 7 be the following tableau:

a; = a2 aj

~(ay = a2) a2

If a; > a» is true under I, then a; suits 7 under I, with
the empty suiting substitution {}. If, on the other hand,
~{a; > az) is true under Z, then a» suits 7 under Z. In
either case, the conditional term (if ay > az then a) else az)
suits 7 under T. O

B. Satisfying a Tableau

The notion of suiting a tableau depends on the interpretation;
a term may suit a tableau under one interpretation and not
under another. In that sense, suiting is analogous 1o truth
for a sentence. We now introduce a notion of “satisfying” a
tableau, which is independent of the particular interpretation.
That notion is analogous to validity for a sentence.

Definition (Satisfying a Tableau)

In a theory TH, a closed term £ sarisfies a tableau 7 if 1
suits 7 under every model of TH. O

If we think of the tableau as a specification, ¢ corresponds

to a program that satisfies the specification.
Example (Satisfying a Tableau)
Suppose T 1is the following tableau:

assertions

f(alwa2)

a; » aj @z

680 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 8, AUGUST 1992

Let our background theory be the total reflexive theory TR.
Then the closed term

t: if a; > as then ey else o

satisfies T in TR.
To see this, consider an arbitrary model I for TR. We
distinguish between two cases:
Case: a, > a3 is true under T: In this case, ¢ equals a;
under Z. Then t suits the first row

under 7, as we have seen. Therefore ¢ suits 7 under Z.

Case: a, » a is false under Z: In this case, t equals ap
under I. Also (by the totality axiom, since I is a model for
the total reflexive theory TR), az > a; is true under Z. Thus
t suits the second row

under Z. Therefore { suits 7 under I.
Thus for any model T for the theory TR, ¢ suits T under Z.
Hence £ satisfies the tableau in TR. N

C. Equivalence Between Tableaux

We introduce two distinct relations of similarity between
tableaux. The stronger relation, equivalence, requires that the

two tableaux always have the same suiting terms.
Definition (Equivalence of Tableaux)

Two lableaux 7y and 77 are equivalent in the theory TH,
written Ty « T, if and only if for every closed term ¢ and
every model I for TH,

¢ suits T, under T
if and only if
t suits 77 under . O

That is, for 7; and T; to be equivalent in TH they must have
the same suiting terms under each model for the theory. When
we say that two tableaux are equivalent without specifying a
theory, we mean that they are equivalent in predicate logic.
If two tableaux are equivalent (in predicate logic), they are
equivalent in any theory.

Eamples of equivalent tableaux will be provided by the
following basic properties. The proof of one of these properties

is provided; the others are similar.
Property (Duality)
For any sentences .4 and G and optional term s, we have:

O

In other words, any assertion .4 is equivalent to a goal (-.4),
with the same output entry s, if any. Any goal G is equivalent
to an assertion (—G), also with the same output entry.

The equivalence relation between tableaux has the substi-
tutivity property that if we replace any subtableau of a given
tableau with an equivalent tableau, we obtain an equivalent
tableau. Hence the duality property allows us to push any
assertion of a tablean into the goal column by negating it,
obtaining an equivalent tableau.

It will follow that, for any tableau, we can push ali the asser-
tions into the goal column, or all the goals into the assertion
column, by negating them, thereby obtaining an equivalent
tableau, Neverthless, the distinction between assertions and
poais has intuitive appeal and possible sirategic power, so we

retain it.
Property (Renaming)

For any sentences A and G, optional term s, and permutation
«, we have:

O

Applying a permutation to a row has the effect of system-
atically renaming its free vairables. For example, by applying
the permutation 7 : {z «— 3,y «— 2,2 « z} to the assertion

plx.y))
we obtain the assertion
ply.=) flw)

The property tells us that these two rows are equivalent.

The renaming property states that we can systematically
rename the free variables of any row, obtaining an equivalent
tableau.

We prove the renaming property for a goal row.
Proof (Renaming Property)

Suppose the closed term £ suits the row

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 681

under interpretation I, with suiting substitution A. Then by
the truth condition,
(%) GA is closed and true under Z,
and by the output condition,
(t) sA is closed and equal to ¢ under Z.
We show that then ¢ also suits the row

Gr 5%

with suiting substitution m~1, where 71 is the inverse of
the permutation 7.
To show this, we show the truth condition,
(Gm) (=~11) is closed and true under Z,
and the output condition,
{s7) (w~1A) is closed and equal to ¢ under I.
But these follow from the conditions (*) and (1), because
by properties of substitutions, (G7) (7713} = G(zr~1)A =
G{}» = G, and similarly for s.
In the other direction, we assume that ¢ suits the row

L Gr 5%

with suiting substitution A, and can show that ¢ also suits the
original row

with suiting substitution 7 A. 0
Praperty (instance) For any sentences A and G, optional
term s, and substitution #, we have

A s

A 5 —_—
L LAG s8
G $

G s —
Ge s6

d

1t follows that we may add to a tableau any instance of any
of its rows, obtaining an equivalent tableau. Note that, while
the duality and renaming properties allow us to replace one
row with another, the instance property requires that we retain
the old row while adding the new one. If we replaced the row,
we would not necessarily retain equivalence.

The following property allows us to add to or remove from
a tableau any valid assertion or contrasting goal, and retain

the tableau’s equivalence. We restrict our attention to a fixed

theory TH.
Property (Valid Assertion and Contradictory Goal)

Suppose A is a sentence whose every ground instance Af
is valid in theory TH; suppose G is a sentence whose every
ground instance G# is contradictory in TH. Then for any
tableau 7 and term s,

T
T —
A 5
T
b T —
G s

in theory TH. In other words, .4 may be added as an assertion,

or G as a goal, to any tableau, yielding an equivalent tableau.

0

1t follows from the valid-assertion property that any row

or can be dropped from any tableau. These
are sometimes called trivial rows.

We have defined validity in a theory for closed sentences
only. However, if .A is an assertion in a tableau that is not
closed, we often say that .4 is a valid sentence when we
really mean that every closed instance of A is valid. The
valid-assertion property can then be paraphrased to say that
a valid assertion can be added to any tableau, preserving its
equivalence.

The following property tells us more about what it means

when a row lacks an output entry.
Property (No output}

A row (assention or goal) with no output entry is equivalent
10 one whose output entry is a new variable; that is, a variable
that does not occur free in the row:

T: — T, u

0

The rationale here is that if some closed term suits either
of these rows, then any closed term will. More precisely,
a closed term ¢ suits 7 with suiting substitution {z; —
ti, Ty — tn} if and only if { suits T, with suiting
substitution {u «— ¢,x; — #3,--+, 2, «— In}-

D. Primitive Expressions

For some purposes, the notion of equivalence is too strong.
We may not care if two tableaux are suited by the same closed
terms, for each model for the theory, so long as they are
satisfied by the same closed terms. And we may not care if
they are satisfied by precisely the same closed terms, so long
as they are satisfied by the same closed terms that correspond
to computer programs; that is, those that we know how to

682 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 8. AUGUST 1942

compute. This latter idea is captured in the notion of primitive
terms.

Definition (Primitive Expression)

Assume we are given a finite set of constant, function, and
predicate symbols, called the primitive set. An expression is
said to be primitive if

» It is quantifier-free

+ All of its contant, function, and predicate symbols belong

to the primitive set. O

Note that a primitive expression may contain variables.

Intuitively speaking, the primitive expressions are those we
know how to compute, in terms of the variables and the
elements of the primitive set. Typically, the primitive set will
include the basic operators of the theory, plus those function
symbols for which we have already derived programs. For
example, in deriving a program to compute the multiplication
function in the theory of the nonnegative integers, we typically
include the constant symbel 0, the addition function symbol
+, and the equality predicate symbol = in the primitive set.

We can now define a relation of similarity, weaker than
equivaience, between tableaux.

Definition (Primitively Similar)

Two tableaux are primitively similar in theory TH if they
have the same primitive satisfying terms; that is, for every
closed primitive term t,

t satisifies 7y in TH
if and only if
t satisfies T in TH. O

Evidently, if two tableaux are equivalent, they are primi-

tively similar. Let us give an example to show that primitive

similarity is a strictly weaker notion than equivalence,
Example (Equivalence Versus Primitive Similarity)

Consider the two tableaux:

7 [Towll o 7 [Jaw [+]

These tableau are not equivalent. If Z, is the interpretation
{p(a)}, a suits T, under T, but a does not suit T, under 7,,.

On the other hand, in the theory of predicate logic, no
closed term satisfies T; in particular, no term suits 7, under
the empty interpretation { }, because p{a) is false under
{ }. Similarly, no closed term satisfies 7; in predicate logic
either. Hence, the two tableaux are primitively similar, because
they are satisfied by precisely the same primitive satisfying
terms—namely, none. O

If two tableaux are primitively similar, they specify the same
class of programs.

IV. PROPERTIES OF DEDUCTION RULES

Deduction rules add new rows to a tableau. They do not
necessarily preserve equivalence, but they do preserve primi-
tive similarity; that is, they maintain the set of primitive closed
terms that satisfy the tableau. Thus the program specified by
the tableau is unchanged by the application of deduction rules.

Definition (Soundness)

A rule for adding new rows to a tableau is sound in theory
TH if the same primitive closed terms satisfy the tableau in
TH before and after applying the rule. O

We shall guarantee that each of our deduction rules is sound
in the background theory.

Let us introduce some terminology for speaking about
deduction rules. We use the following notation to describe
a rule:

T

Gr

Ay

Gy

Here, the assertions .4, and the goals G, are the required rows
7., which must be present in the tableau if the rule is 10 be
applied. The assertions .4, and the goals G, are the generated
rows 7, which may be added to the tableau by the rule.

The old tableau refers to the tableau before the application
of deduction rules; if the rule is applicable, the required rows
form a subtableau 7. of the old tableau. The new tableau refers
to the tableau after application of the rule; it is the union of
the old tableau and the generated tabieau 7.

Although we are not yet ready to introduce the deduction
rules of our system, we mention one of them as an illustration.

Example (If-Split Rule)

In tableau notatjon, the if-split rule is written

if A R

then G -

A 5
G "

In other words, if a goal of the form (if A then G) is present
in the tableau, then we may add the new assertion .4 and
the new goal G. The output entry s for the required goal
(if Athen G), if any, is inherited by the generated assertion
A and the generated goal G. a

A. Description of the Derivation Process

At this point we describe the derivation process and relate
it to the deductive tableau notation.
We are given a specification

fla) « find z such that Qfa, 2]

in theory TH. We assume that z is the only free variable
in Qla,z]. We are also given a set of primitive symbols; to
allow the formation of recursive programs, we include f in
the primitive set.

We form the initial tableau

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 683

The input a is taken to be a constant; the output z is a variable.
The assertions Ay, ...,.4, in the initial tableaux are known
to be vaiid in TH.

The deductive process proceeds by the application of sound
deduction rules to the tableau, which add new rows while
maintaining primitive similarity.

The process continues until we obtain a final row, either
the assertion

¢ |

l false

or the goal
l e || ¢ |

where ¢ is a ground primitive term. At this point we may stop
the derivation process. The program we obtain is

fla) <t

Example (Derivation Process)

In the theory of finite strings, we want to derive a program
that, for a given nonempty string s, returns the last character
of s and the string of all but the last character of s. Our
specification is

find (2),232) such that
if 7 (s=A)

(front(s), last(s)) <= then char(zz) A

8§ =2 % 23.

In other words, we want to decompose s into the concatenation
z1 * 79 of a string z; and a character zo; then 29 is the last
character of s and z; is the string of all but zz. We assume
that s is not equal to the empty string A, Note that for this
program there are two outputs, z; and zz. That is, we need
to compute two functions, front and [ast. The primitive set
includes all the basic constant, function, and predicate symbols
of the theory of strings, as well as the function symbols front
and last.
The comresponding initial tableau then contains the goal

assertions goals fla) asseriions goals front(s)| last(s)
Qla.z| B if (s =A) - N
then char(za) A s = z) * 22 -1 =2
A,
Here, the input s is a constant and the outputs z; and 2, are
A variables. Properties of the theory of strings are also included
" in the initial tableau as assertions. For instance, the axioms for

the concatenation function are represented as the assertions

Axy=yg

if char(u)
then (u-y1)syz =u- (v * y2)

By the application of deduction rules, new rows are added
to the tableau, obtaining a primitively similar tableau. The
process continues until we ultimately obtain the final goal

if char(s) if char{s)

then A then s

true

else head(s). elselast(tail(s))

front(tail(s))

The program we extract from the proof is then
(if char(s)
then A

L else head(s) - front(tail(s))
[if char(s)

then s

Sfront(s) < ¢

last(s) <
else last (tail(s)).

0
The correctness of the derivation process depends on two

properties of tableaux. We begin with a definition.
Definition (Correctness)

A progrtam f(a) <« t[al is correct with respect to the
specification
fl(a) < find z such that Qla, 2]
if the sentence
(Vz)Qle, f(z)]
is valid in the theory TH augmented with the additional axiom
(Vz)[f(z) = tlz]]-
a
The additional axiom we add to the theory is the definition

of the new program f.
Property (Initial Tableau)

If any closed term ¢[a] satisfies the initial tableau,

684 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 8, AUGUST 1992

assertions goals fla)
Qla. =] z
Ay
All

in theory TH, the program f{a) < f[a] is correct with respect
to the specification

f(a) < find » such that Qfa, 2]

in TH. a

The proof is omitted.
Property (Final Tableau)

A closed term ¢ satisfies any tableau containing the final
assertion

false J | | t

|

or the final goal

J true I l t l

in any theory TH. O

Let us prove this.
Proof (Final Tableau Property)

Suppose the tableau contains the final goal,

T

trie

Then for any model Z of the theory, the truth condition holds
because true is true under Z, and the output condition holds
because ¢ equals ¢ under 7. d

B, Justification of a Deduction Rule

Our deductive system will have several deduction rules.
Furthermore, if we wish to apply the syslem to a particular
theory, it may be convenient to introeduce new rules peculiar
to that theory. To establish the soundness of these rles, we
introduce a general method for justifying deduction rules.

For each rule we formulate a justification condition. If the
justification condition holds, then the rule is sound. This is the
content of the following result.

Property (Justification)

A deduction nule is sound in theory TH if the following
Justification condition holds:

for any model Z,. for theory TH,
there exists a model I, for TH such that
for any closed primitive term ¢,
if t suits the generated tableau 7, under 7,
then ¢ suits the required tableau 7. under I,
and
t suits the old tableau 7, under I,
if and only if
t suits 7, under Z,. O
The justification condition suffices to establish that, when
we add the generated rows to the tableau, we are not altering

the set of primitive satisfying terms.
Proof (Justification Property)

Suppose that the justification condition holds for a deduction
rule. We would like to show that the rule is sound. In other
words, we must show that the new tableau and old tableau
specify the same class of primitive closed terms. Because we
are adding new rows but not deleting any, we cannot lose
any primitive closed terms in applying the rule; we merely
must ensure that we do not gain any. In other words, we must
guarantee that for any primitive closed term ¢,

if ¢ satisfies T, in theory TH

then ¢ satisfies 7, in TH.
Suppose t does satisfy 7, in TH; we must show that ¢ also
satisfies 7. Consider an arbitrary model Z,. for TH; we would
like to show that

t suits 7, under Z...
We have supposed that the justification condition holds for
this deduction rule. Let 7, be the model corresponding to I,
whose existence is guaranteed by the justification condition.
Because we have supposed that ¢ satisfies 7, in theory TH,
we know that

t suits T, under Z,.

The new tableau 7,, consists of the original rows T, plus the
generated rows 7. To suit the entire tableau 7, the term must
suit one of these two subtableaux. We distinguish between two
cases.

Case: t suits T, under I,
Then by the justification condition,
t suits 7, under I
as we wanted to show.
Case: t suits T, under I,
Then by the justification condition again,
t suits 7, under Z,.
But since 7, is a subtableau of the old tableau 7, we have
t suits 7, under T,
as we wanted to show. |

The justification property can be used to show soundness of
rules that do not preserve the equivalence of the tableau. If a
rule does preserve equivalence, it is automatically sound and

there is a simpler way to show that it preserves equivalence.
Property (Justification for Equivalence)

A deduction rule preserves equivalence in theory TH if the
following justification condition for equivalence holds:
for any model T for theory TH,
for any closed term ¢,
if ¢ suits the generated tableau T, under
then ¢ suits the required tableau 7, under Z. O

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 685

Proof (Tustification for Equivalence Property)

Suppose that the justification condition for equivalence
holds for a deduction rule. We would like to show that the
rule preserves equivalence. In other words, for each model T
for TH, we must show that the sets of terms that suit the two
tableaux are the same. Because the rule adds but never deletes
rows, we cannol lose any suiting terms in applying the rule;
but we must ensure that we do not gain any. In other words,
we must show that, for any closed term ¢,

if ¢ suits 7,, under T
then ¢ suits 7, under I.

Suppose t does suit 7, under I; we must show that ¢
also suits 7,. Because ¢ suits 7., it must suit either the
original subtableau 7, {as we wanted to show) or the generated
subtableau 7, under I.

If £ suits 7, under T, the justification condition for equiva-
lence tells us that it also suits 7, and therefore 7,, under 7,
as we wanted to show. g

Let us use the justification condition for equivalence to show
the soundness of the if-split rule,

Property {Soundness of If-Split)

The if-split rule preserves equivaience of tableaux, and
hence is sound, in any theory TH. O

The proof of the soundness of the if-split rule requires a

technical notion that will also be useful later.
Definition (Closing Substitution)

Let e be any expression, y1,---,y» be a complete list
of all the free variables in e, and a be a constant. Then
the substitution A, = {y1 — @, -, yn — a} is a closing
substitution for e.

In the case in which there are no free variables in e, that is,
if e is closed, we take the closing substitution A, = {}. O

Note that, if A, is a closing substitution for ¢, then e}, is
closed.

Proof (Soundness of If-Split)

We show that the justification cendition for equivalence
holds for the if-split rule.

Let T be a model for the theory TH and ¢ be any closed
term. We suppose that ¢ suits the generated tableau 7, under
Z, and show that then ¢ suits the required tableau 7. under .

If ¢ suits the generated tableau, it must suit at least one of
the two rows

We suppose it suits the assertion. Then for some suiting
substitution A, we have, by the truth condition,
A is closed and false under 7
and, by the output condition,
s) is closed and equal to ¢ under I.
Let A; be a closing substitution for GA. We show that ¢ suits
the required tableau 7, under I, with suiting substitution AA,.
Because 4) is closed, .A)), is identical to .4}, and hence
is closed and false under Z. Therefore, by the semantic rule
for if-then, (¢f .AM), then GA),) is closed and true under Z;

that is, the truth condition holds (if .A then G)AA, is closed
and true under 7,
Becawse s is closed, sA), is identical to sA, and hence we
have the output condition
8AA, is closed and equal to ¢ under I,
This establishes that ¢ suits the required tableaun 7,

if Athen G &

under T, as we wanted to show.
The proof for the case in which ¢ suits the generated goal
is the same. a

C. Simplification

Before we introduce the rules of our system, we would like
to describe the simplification process. This is a process in
which subexpressions of the tableau are replaced by simpler
expressions. Simplification can be applied to the assertions,
goals, or output entries of the tableau. Subsentences are
replaced by equivalent sentences, and subterms are replaced by
equal terms. The set of simplifications to be applied depends on
the background theory, although some simplifications can be
applied in any theory. Because the result of a simplification is
always simpler than the given expression, termination of the
process is guaranteed.

Simplification is not regarded as a deduction rule. While
a rule adds new rows to a tableau without changing those
that are already present, simplification replaces an old row
with a new one. Also, while the application of a deduction
rule is at the discretion of a user or control strategy, the
simplification process is mandatory and automatic. That is, we
shall fully simplify all the rows of our tableau before applying
any deduction rule.

Example (Simplification}

The and-two simplification,

FAF=F

allows any subsentence of the form (F A F) to be replaced by
the comesponding sentence JF. Applying that simplification,
we replace the row

(1) V (gla) A gla)) g(z)

with the corresponding row

plx) V g{a)

g} 7

a

We arbitrarily divide our simplifications into categories.
The true-false simplifications replace subsentences containing
instances of the truth symbols true or false. For example, the

686 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 8. AUGUST 1992

and-true simplification,

FAatrue = F

and the not-false simplification,
- false = true

are true-false simplifications. We pravide a full set of these,
so that, after simplification, a sentence will contain no proper
suboccurrences of the truth symbots frue or false.

There are other logical simplifications that are not true-faise
simplifications, such as the or-two simplification,

FvF=F
the cond-term-two simplification,
if Fthenselses= g
and the all-redundant-quantifier simplification,
(V2)F = F, where z does not occur free in F.

Finally, there are theory simplifications, whose application
is limited to a particular theory. For example, if our back-
ground theory is the nonnegative integers, we include the
plus-zero-right simplification for addition,

u+ 0=

In the theory of strings, we have the lefi-empty simplification
for concatenation,

Axv= .

V. THE DEDUCTION RULES

We are now ready to introduce the deduction rules of our
system. We divide them into several categories:
*» Splitting rules.
ponents.
* Resolution rule. Performs a case analysis on the truth
of a subsentence of two rows.
» Equivalence rule. Replaces a subsentence with an equiv-
alent sentence.
= Skolemization rules. Remove quantifiers.
» Equality rule. Replaces a subterm with an equal term.
* Mathematical induction rule, Assumes that the desired
program behaves correctly on inputs smaller than the
given one.
We describe the splitting rules, the resolution ruie, the equal-
ity tule, and the mathematical induction rule subsequently.

Break down a row into its logical com-

A. The Splitting Rules

These rules are logically redundant: any theorem that can be
proved with the help of the splitting rules can also be proved
without them. Nevertheless, splitting rules often clarify the
presentation of a proof.

We include three splitting rules in our system:

Rule (And-Split)
In tabieau notation,

Ay A As 5
A] 5
Ag 5

In other words, an assertion that is a comjunction can be
decomposed into its two conjuncts. The output entries of the
required assertion, if any, are inherited by the two generated
assertions. If the required row has no output entries, neither
do the generated rows. 0

The or-split ruie is similar:
Rule (Or-Split)

G VG $
Gy 5
G s

In other words, a goal that is a disjunction can be decomposed
into its two disjuncts. O

The and-split and or-split rules reflect the meaning of the
tableau: there is an implicit conjunction between the assertions
of our tableau and an implicit disjunction between the goals.
Note that there is no or-split rule for assertions and no and-spiit
rule for goals.

We have seen the if-split rule:
Rule (If-Split}

if Athen G 5
g 5
A 5

In other words, an implication can be split into an assertion
and a goal, its antecedent and consequent, respectively. O

The if-split rule reflects the intuitive proof method that, to
prove a sentence (if A then G}, assume the antecedent 4 and
attempt to prove the cansequent G. The justification for the if-
split rule was used to illustrate the justification property for
equivalence. The justification for the other splitting rules is
similar.

Example (If-Split Rule)

Suppose our tableau contains the goal

ife>»0

then=2 <r AT < (z4+¢)

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 687

Then we may add its antecedent as the assertion

e>0 =

and its consequent as the goal

2LrAr<(=+e)? z

B. The Resolution Rule

The resclution rule is a nonclausal version of the classical
Robinson [36] resolution principle, introduced for program
synthesis [23]; a similar nonclausal resolution rule was de-
veloped independently by Murray [31]. The rule corresponds
to a case analysis in an informal argument, and it accounts for
the introduction of conditional terms in program derivation.

We present it first as it applies to two goals.
Rule (GG-Resolution)

Gi[P] 5

G2[P] t
G 8| false] if Po
A then 18
Guf[true] else s

More precisely, the rule allows the following inference:

* We take G, and G; 10 be goal rows with no free variables
in common; we rename the variables of these rows to
achieve this, if necessary.

* We require that P and P’ be free, quantifier-free sub-
sentences of G1[P] and G,[P’], respectively, that are
unifiable. We let # be a most-general unifier of these
sentences; thus 78 and P’ are identical. In general, there
can be more than one subsentence P in G, [P, and more
than one subsentence P’ in G,[P’]; we take 6 10 be a
most-general unifier of all these subsentences.

* We replace all occurrences of P# in G,8 with false,
obtaining G, 8| false]; we replace all occurrences of P8
(that is, P8) in G,0 with true, oblaining Gof[true].

* We take the conjunction of the results, obtaining
(G10] false] A Gafjtrue]). After simplification, this is
added to the tableau as a new goal.

= The output entry associated with the new goal is the
conditional term (if P8 then tf else sf). The test of
this conditional is the unified subsentence P#. The then-
term and the else-term are the appropriate instances 6
and s#, respectively, of the output entries of the required
goals. O

Before discussing the ramifications of this rule, we illustrate
it with an example,
Example (Resolution Rule)

We apply the rule to a goal and a copy of itself. Assume
our tableau contains the row

2 e Az +e)igr| :

{We shall explain the box and minus-sign annotations subse-
quently.) This row has the variable z in common with itself;
therefore in the copy we rename z 10 2t

0y

[FrtanlE+ a2 <]

The boxed subsentences P : {z+¢)° < rand P : 32 < r
are unifiable: a most-general unifier is Z — z + €. The unified
subsentence P#@ is then (z + 5)2 <.

We apply # to the two rows; the original row is unchanged,

but the renamed copy becomes

(z4+e)<r A

Al + &) ¥ < T

We replace all copies of P# in the instantiated original row
with false, and all occurrences of P# in the instantiated copy
with frue. The conjunction of the resulting goals is added to
the tableau as a new goal:

2 < r A{=false) iflz4e) <r
A then =+ ¢

true A S[{{z+)+ < 1) else =

The output entry of the new goal is a conditional term whose
test is the unified subsentence and whose then-term and else-
term are the appropriate instances of the outpui entries of the
two required rows.

The derived row is simplified to

iflz4? <
2L Aoz +26)? <1} then = + ¢

else =

The simplifications that were applied to the goal are the
true-false simplifications,
- false = true

688 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, YOL. 18, NO. §, AUGUST 1992

F Atrue = F
trueANF =2 F
and the numerical simgplification

(u+v)+v=u+ 20 0
Digression (Binary Search})

Let us imerrupt the exposition a moment and discuss the
intuition behind the step in the preceding example.
The given goal,

2<rAanllz+e? <] 3

is a consequence of the initial goal from the derivation of
the rational square-root program. It expresses the fact that we
would like to find a nonnegative rational number z that is an
approximation within ¢ less than the exact square root of r.
That is, /7 should lie in the half-open interval [z, z + €}. If
we succeed, z will be a suitable output for the program.

The derived row,

if (z4€¢?<r

22<r Aoz +26)7 <) then = +¢

else =

expresses the fact that it suffices to find a nonnegative rational
z that is a cruder approximation, within 2e less than the
exact square root of r. That is, v/ should lie in the interval
[z,z + 2€). If so, the conditional term

if (z+e) <7

then z + ¢

else z
will be a suitable output for the program.

Why is this? Note that z + € is the midpoint of the interval
[z,z + 2€). In the case in which (z +¢)° < , that is,
z + € < /7, we know that /7 lies in the right-half of the
interval. But then the then-term z + ¢ is within ¢ less than the
exact square root of r.

In the alternative case, in which r < (z+¢)?, that is
VT < z+ ¢, we know that /7 lies in the Jeft-half of the
interval [z, z 4+ 2¢). But then the else-term z is already within
¢ less than the exact square root of r.

In either case, the value of the conditional term is within e
less than the exact square root and hence is a suitable output
for our program.

The derived row contains the basis for the idea of binary
search, while the given row does not. This discovery was
obtained by a mechanical step, a single application of the
resolution rule. O

C. No-Conditional Cases

In applying the resolution rule, we normally introduce a
conditional term as the output entry for the derived row. There

are some cases, however, in which we apply the rule without
introducing a conditional.

Suppose that the output entries s and £ of the required rows
happen to be unified by the substitution &; that is, s6 and ¢§
are identical, In this case, the conditional ontput entry

if P8

then t

else s
is simplified by the cond-term-two simplification

if Fthenuvelsenwu= u
to yield sf. Thus in this case the rule introduces no conditional
term at all. The resulting program is of course more efficient
than if the conditional had been introduced. Moreover, if the
test 78 is not primitive, we may not know how to compute
the conditional at all.

Suppose now that one of the two required goals, say Ga, has
no output entry. Then instead of the conditional, the output
entry for the generated goal will be simply sf, where s is the
output entry for G;.

Why is this? By the no-output property, the goal Go
with no output entry is equivalent to one with the new
variable u as output entry, where u does not occur free
in the row and is unaffected by 4. The output entry
generated by the standard, conditional case of the rule is
(if P8 then uf else s6). Because u is unaffected by 4, this is
(if PO then u else s#). By the instance property, we may add
to our tableau the instance of that row whose goal is the same
but whose output entry is {if P8 then sf else s8), which
again simplifies to sf. We shall call this the “one-output”
case.

Suppose, finally, that both goais have no output entry; then
the derived goal has no output entry either. Why? By the
no-output property, again, the first goal is equivalent to one
with output entry v, where v is a new variable. By the one-
output case of the resolution rule, we may associate with
the goal the output entry »#, that is, v. But then, by the
no-output property again, that output entry can be dropped
aliogether.

The no-conditional cases of the resolution rule will be il-
lustrated after we have introduced the dual versions.

D. Dual Versions of the Resolution Rule

We have presented the resolution rule as it applies 10 two
goals. With the duality property, we can justify dual versions
of the rule, that apply to two assertions, or to an assertion and

a goal. These may be expressed as follows:
Rule (AA-Resolution)

Ai[P] s
A2[P] t
A8 false] if P8
v then t8
Az 8[true] else s8
O

#

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 68Y

Rule (AG-Resolution)

AP ¥
G2{P] !
~(A18[false]) if Pd
A then 18
Gafltrue] else s
O
Rule (GA-Resolution)
Gi|P] 5
Az [P t
G10| false] if Pa
A then t8
—(A28(true]) else s6
O

The notation restrictions and nonconditional cases for these
dual versions of the rule are the same as for the original (GG)
version,

The justification for these dual versions lies in first pushing
the assertions into the goal column by negating them, then
applying the GG version of the rule. For the AA version, the
resulting goal is subsequently pushed back to the assertion
column, negating it once more. The resulting assertion,

A, 6| false]
- A
- A f[true]

is then simplified, with the simplification
A(-~FAG)— FVG

10 yield
Ay 8] false]
v

Az B[true).
The following application of the resolution rule iliustrates

both the AG version and the one-output case of the rule.
Example (Dual Version, No-Conditional)

Suppose our tableau includes the assertion

-

and the goal

Zaltazza :

We would like to apply the AG version of the resclution rule
to these rows. The two rows have no variables in common.
The boxed subsentences are unifiable; a2 most-general unifier is
8 :{u — aj.z — ay}. The result of applying the AG version
of the resolution rule is then;

—false
A ap
frue A @) = az

which simplifies to

Because the assertion has no output entry, the derived goal
has no conditional; this is a one-output case of the rule.

The step illustrated is part of the derivation of a program
to find an upper-bound for two objects a; and ao in the total
reflexive theory TR. The intuitive content of the derived row
is that, in the case in which a; > ag, the term a) will be a
suitable output for the program. O

E. Polarity

The resolution rule could be applied with the roles of the
two rows reversed. For instance, in the preceding section we
applied the AG version of the resolution rule to an assertion
and a goal. We could also have applied the GA version to the
same goal and assertion, obtaining

false A ap = az
A ay
~frue

which simplifies to the trivial goal

false ay

It is typical that, of the two ways of applying the rule, one
will not advance the proof. In this section, we introduce a
syntactic condition that will aliow us to avoid many of these
fruitless applications of the resolution rufe.

Roughly speaking, a subsentence of a tableau is of negative
(—) or positive (+) polariry if it is within the scope of an odd
or even number, respectively, of negation (—) connectives.

650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18. NO. 8. AUGUST 1992

Thus, in the goal

rule, obtaining

(it A ~(latwi*))

p{z) is of negative polarity, because it is within the scope of
a single negation, but g(y) is of positive polarity, because it
is within the scope of two negations. We have annotated each
of these subsentences with its polarity symbol.

We regard the antecedent F of an implication
(if F then G) as being within the scope of an additional
implicit negation, because (if F then G) is equivalent 1o
{(—F) or G). Also, while each goal has positive polarity, we
regard each assertion .4 as having negative polarity, because
we could push it into the goal column by negating it, obtaining
{-A). We regard both sides F and G of an equivalence
(F = G) as having both polarities (+), because (F = G) is
equivalent to (¢f F then G) A (if G then F); the first
occurrence of F is within the scope of an additional implicit
negation, but the second is not; similarly for G. The if-part F of
a conditional sentence {if F then G else H)} or a conditional

term (if F then s else t) also has both polarities.
Example (Polarity)

The following sentence is annotated according to its polar-
ities:

i (if lpta)]™ then [g(a)]t)]
then ([p(u)]i = [l'c‘(“)]t)

Because the sentence is an assertion rather than a goal, its
polarity, and that of all its subsentences, are reversed. O

Now that we have defined polarity of a subsentence of
a tableau, we can use the notion to describe a strategy for

restricling the resolution rule.
Definition (Polarity strategy, for Resolution)

An application of the resolution rule is in accordance with
the polarity strategy if at least one negative occurrence of the
unified subsentences P is replaced by false, and at least one
positive occurrence of the unified subsentences P’ is replaced
by true. The positive and negative occurtences to which we
refer may actually have both polarities. O

We illustrate the polarity strategy with an example.
Example (Polarity Strategy)

Suppose our tableau contains the two goals:

[= q(:r)] A (+ V-ﬂq(a)) tz,v)
: :

The boxed subsentences are unifiable, with most-general uni-
fier {z — a,y — e}. Therefore, we may apply the resolution

[false = g{a)] A [false V —g{a)] if pla)
A then a
trie else t{a.a)
which simplifies to
if pla)
—gla) then a
else t(a.a)

This application of the rule is in accordance with the polarity
strategy: The subsentence p(z), which has negative (in facl,
both) polarities, is replaced by false; also, the subsentence
p(a), which has positive polarity, is replaced by frue.

We can also reverse the roles of the two goals in applying
the resolution rule, obtaining

faise if pla}
A then t{a.a)
[true = g(a)] A (trueV —g{a)) elsc a

which simplifies to the trivial poal

if pla)
then t(a.a)

false else a

This application of the rule is in violation of the polarity
strategy, because no negative occurrence of the unified sub-
sentences is replaced by false. [}

We have illustrated the polarity strategy with the GG version
of the resolution rute. The strategy is precisely the same for the
other versions. We must remember, however, that polarities
are reversed in assertions.

Violating the polarity strategy does not always cause us
to derive a trivial row; furthermore, observing the strategy
does not always prevent us from deriving a trivial row.
Nevertheless, it can be shown that observing the polarity
strategy never prevents us from completing a proof, and in fact
never even lengthens the proof. Because observing the strategy

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 691

greatly reduces the number of applications of the rule we must
consider, there is little reason to ever apply the resolution rule
in violation of the polarity strategy.

F. Relation with Classical Resolution

The question arises as to how the nonclausal resolution
rule presented here relates to the classical clausal resolution
principle introduced by Robinson [36]. The clausal version of
the rule is only applied to assertions that are in clausal form:
that is, they are disjunctions of literals, where each literal is
either an atom or the negation of an atom. If we apply the
clausal resolution principle to the two clauses

Pva
-P'VR

(where P is an atom and Q and R are themselves clauses),
we obtain

ag v RE,

where 6 is a most-general unifier of P and 7,
On the other hand, if we apply the AA version of the
resolution rule to the corresponding two assertions

we obtain the new assertion

SalseV Q8
v
—frue VTREA

which simplifies to

QevRE

This assertion corresponds to the same clause produced by the
classical resolution rule.

G. Justification of the Resolution Rule

Let us now justify the resolution rule.
Property (Soundness of Resolution)

The resolution rule preserves equivalence of tableaux, and

hence is sound, in any theory TH, O
Proof (Soundness of Resolution)

Let us reproduce the resolution rule here for coavenience:

T G [P »
" G2 !
Gr8[false) if P8
7o A then td
Gaf [true] elsr s#

We show that the rule satisfies the justification condition for
equivalence. Let 7 be a model for TH, and r be any closed
term. We suppose thal r suits the generated tableau 7, under
Z, and show that r then suits the required tableau 7. under 7.

If 7 suits 7, under Z, then there must be a suiting substitu-
tion A. In other words, by the truth condition,

G168 [false] G186 [false]A
(A) A, that is, (A)
Go8 [true] Go6 [true]A

is closed and true under Z, and, by the output condition,

if P8 if PO
(then té) A, that is, (them t8A)
else sfl else s6A

is closed and equal to r under I.
It follows that
G180 {false] A is closed and true under 7
G28 [true] A is closed and true under 7
and PBA. t8), sfX are all closed.

The proof distinguishes between two cases.
Case: POX is false under T

In this case, we show that r suits the first row:

91 lPl &

of 7. with suiting substitution 8.
We must show the truth condition, that
G1[P]éX is closed and true under Z.
But G16[false)\ may be obtained from G, [P]#A by replacing
some occurrences of the closed subsentence PAA with the
sentence false, which has the same truth-value in this case.
Also, G18(false]) is itself closed and true under Z. This
implies the desired truth condition.

We must also show the output condition, that

88X is closed and equal to r under 7.
But the conditional term (if P8 then tfA else s6X) is, in
this case, equal to sfA under Z. Also the conditional term is
closed and equal to r under Z. This implies the desired output
condition. ‘

Hence in this case, r suits the first row of 7, under I. In
the alternative case, in which P8X is true under 7, we show
that » suits the second row of 7, under Z, again with suiting
substitution #A. Hence in either case, r suits the required

.tableau 7. under Z. This shows that the rule satisfies the

justification condition for equivalence. O

692 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. B, AUGUST 14992

H. The Equality Rule

Normally, we describe the properties of the functions and
relations of our theory by introducing assertions into the
tableau. For example, we may describe the > relation of
the total reflexive theory TR by introducing axioms into our
tableau as assertions:

uru

urrVoeru

Proven properties may also be introduced into the tableau as
additional assertions, such as the following property of the
upper-bound function ub:

ub{u,v) = u A

ub(u.v) = v

This approach is not adequate for describing the equality
relation, for which we require a large number of so-called
functional- and predicate-substitutivity axioms, such as

ifu=vw ifu=v

then f(u,w) = f(v,w) then p(w,u,z) = p(w,v,).

Several such axioms may be required for each function and
predicate symbol used in our proof. If we add all the required
instances, the strategic ramifications are disastrous: these ax-
ioms spawn numerous consequences irrelevant to the theorem
at hand.

Most theorem provers successful at working with the equal-
ity relation have used special equality rules, rather than rep-
resenting equality properties axiomatically. The equality rule
we use here is a nonclausal version of the paramodulation
rule [46].

We present the rule first as it applies to two assertions.

Rule {AA-equality)

Ay [f =1} 5

Az (") 1

A16[false) if({l=r)@
v then t8
Az8{ré} else 56

More precisely, the rule allows the following inference:
* We take .4; and .4, to be assertion rows with no free
variables in common; we rename the variables of these
rows to achieve this, if necessary.

* We require that ¢ = r be a subsentence of A,{f =]
and ¢ be a subterm of Aa(¢') such that ¢ and £ are
unifiable, with most-general unifier . Here, £ = r and
¢ are free and quantifier-free subexpressions. As in the
resolution rule, there may be many distinct subsentences
£=r in A;[£ = 7], and many subterms & in A{¢'}); the
substitution § must unify all the appropriate expressions.

* We replace all occurrences of (£=r)8 in A8 with
false, obtaining .A;8[false]; we replace one or more
occurences of £8 (that is, £8) in 428 with rf, obtaining
A28{rf}. (Because we replace some but not necessarily
all occurrences, we use the angle brackets {) rather than
the square brackets [] to denote replacement.)

* We take the disjunction of the results, obtaining
(A10[false] v Ay6(rf)). After simplification, this is
added to the tableau as a new assertion.

» The output entry associated with the new assertion is the
conditional term (if (£ = r)d then t6 else s8). O

We have presented the equality rule as it applies to two
assertions. As with the resolution rule, we can apply dual
versions of the equality rule to an assertion and a goal, or
to two goals; the justification of these versions of the rule
appeals to the duality property.

Also, as with the resolution rule, we introduce a conditional
term into the output entry only if both given rows have output
entries that fail to be unified by the substitution 8. if only one
of the rows has an output entry s, we take sf as the new output
entry. if both rows have output entries s and # that are unified
by 8, we take the unified term sf as the rew output entry. If
both rows have no output entry, neither will the new row.

An application of the rule is in accordance with the polarity
strategy if at least one negative occurrence of an equality
€ = r is replaced by false; no restriction is imposed on the
occurrences of the subterms £/

The equality rule allows us to replace instances of the left-
term £ with corresponding instances of the right term r. By the
symmetry of the equalily relation, we can justify a right-to-lefi
version of the rule, which allows us to replace instances of the
right term 7 with corresponding instances of the ieft term £.

We illustrate the equality rule with an example.

Example (Equality Rule)

This example is taken from the transformation of a program
to reverse a string. We are in the process of deriving an
auxiliary subprogram rev2(s,t) to reverse the string s and
concatenate it onto the string ¢.

Our tableau contains the two goals

rev2(tail(s). head(s) 1)

(=)
::rev(El):t : B

These rows have no variable in common. The boxed subterms
are identical and hence unifiable with most-general unifier
{ }. The result of applying a dual version of the rule, the
GG-equality rule, is then:

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 693

- false ifs=A
A then =
z=rev(A)«t else rev2{tail(s). head(s) -)

|

which reduces under simplification 1o

ifs=A
then =
else rev2(tail(s). head(s)-1)

t
N
e

L

Because both terms have output entries, a conditional term
is introduced as the new output entry. The application is in
accordance with the polarity strategy, because the occurrence
of the equality (s = A) is negative in the tableau. (i

Example (Equality Rule)

This example is taken from the derivation of a square-root
program in the theory of nonnegative rationals. We assume
our tableau contains the assertion

= |

which is an axiom for multiplication, and the goal:

Sr/\ .)

zl'<(::+e)2

The two rows have no variables in common. The boxed sub-
terms are unifiable; a most-general unifier is {z — 0, v — 0}.
The result of applying a dual version of the equality rule is
then:

- false A
0<rA 0

r < (0+€)?

which reduces under simplification to

r< et 0

(The condition 0 < = is simplified to {rue in the theory of
nonnegalive rationals.) Because the given assertion has no
output cntry, no conditional construct is introduced in applying
the rule. The application is in accordance with the polarity
strategy, because the occurrence of the equality (0 v = 0) is
negative in the tableau.

The intuitive content of the derived goal is that, for the case
in which r < €2, that is, in which /7 is in the half-open
interval [0,¢), we know 0 is a suitable output for the desired
square-rooi program. d

The equality rule allows us to discard all the equality
axioms, except for the reflexivity axiom » = u, from our initial
tableau, without sacrificing the possibility of completing any
derivation.

I The Well-Founded Induction Rule

The well-founded induction principle is valuable for pro-
gram synthesis and other applications because of its generality:
the induction principles of all theories turn out to be instances
of the well-founded induction rule. In derivation proofs, use
of the rule corresponds to the introduction of recursion, or
other repetitive constructs, into the derived program. Before
we describe the rule, we introduce the notion of a weli-founded
relation.

Definition (Well-Founded Relation)

A relation < is well — founded (in 2 theory TH) if there
are no infinite decreasing sequences in TH; i.e., no sequences
1), T2,%3,--- such that

Ty T2 and 3 > zzand O

For example, the less-than relation < and the proper-
substring relation =< y¢ring are well-founded in the theories of
nonnegative integers and strings, respectively. (A string s is a
proper substring of a string &, written § < s¢ring t, if § and
{ are distinct and if the elements of s occur contiguously
in £) On the other hand, the less than relation < is not
well-founded in the theory of nonnegative rationals, because
1,1/2,1/4,1/8,... constitutes an infinite decreasing sequence
under <.

Well-founded relations are of interest to us because of the
following property.

Property (Well-Founded Induction Principle)

For any well-founded reiation < in theory TH and any
sentence P|[z], any closed instance of the following sentence

is valid in TH:
ifr <z
if (V)
if (V1) Lhen P[:z:]]

then Plz]
then (¥ z)P[z]

T where z' does not occur free in P[z]. 0O

694 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18. NO. 8. AUGUST 1992

In other words, suppose we are trying to prove that P[z]
is true for every object x. For this purpose, it suffices to
consider an arbitrary object =’ and show that P[z’] holds
under the induction hypothesis that P[z] is true for every z
such that = < z'. The well-founded induction principle is
called complete induction or course-of-values induction when
~< is taken to be the less-than relation < over the nonnegative
integers. It is also called Noetherian induction.

In the deductive-tableau framework, this principle is repre-
sented as a rule.

Rule (Well-Founded Induction)

assertions goals

fa)

Qla. =] z

ifr <, a
then Qjr. f(z)]

Here, Qfa, z] is the initial goal of the tableau; we require that
z be the only free variable in the row. (If there are several
output entries zy,. . . , Zn, all of them may occur free in the
goal.) The relation <, is required to be well-founded in TH.
The function symbol f stands for the function we are trying
to compute. O

The rationale for the induction rule is as follows. We are
trying lo construct a program to compute a function f that,
for a given input a, will yield an output z that satisfies
the input—output relation Qfa, z]. It suffices to conduct the
derivation under the induction hypothesis that the function f
will behave properly on each input z that is less than e under
~w. More precisely, we may assume inductively that, for each
input z such that £ < ,, a, the output f(z) will satisfy the
input—output retation Q[z, f(z)].

Example (Well-Founded Induction Rule)

Recall that the initial goal for the front-last derivation is

assertions goals front(s) last(s)

if a{s = A)

then char{zz) A

§= I] ¥ Iz

This row says that we would like our program to decompose
a noncmpty string s into the concatenation of a string z; and
a character zo, so that front(s) and last(s) can be taken to
be zy and zp, respectively.

According to the induction rule, we may add to our tableau
the new assertion

ifr<,s
then if ={r = A)

then char(last(r)) A

r = front{r) « last(x)

This row corresponds to the induction hypothesis that, for any
nonempty input x less than s under <., the functions front
and last will indeed decompose = into the concatenation of
string front{z) and character last(z). The relation <, can
be any well-founded relation. O

When the program being derived has more than one input,
the well-founded rejation <., applics to two tuples of inputs,
rather than to the inputs themselves.

Example (Well-Founded Induction Rule)

The initial goal for the rational square-root derivation is

assertions goals sqri{r.e)

ife>0

then =2 <r A H

r< (2 46)?

According to the well-founded induction rule, we may add
to our tableau as an induction hypothesis the assertion

if (T,v) <ufr.e}
thenif v >0

then {sgri(r. 1:))2 <TA

T < {sgrt{z,v) + v)2

This row declares that the square-root program behaves prop-
erly for any pair of inputs less than the original inputs under
~ w. The well-founded relation applies to two pairs, that is,
two Z2-tuples, rather than to two individual nonnegative
rationals. 0

J. Recursion Formation

The induction hypothesis introduced by application of the
induction rule contains occurrences of the function symbol f,
which denotes the function we are trying to compute. If the
induction hypothesis is used in the proof, it can happen that
terms of form f(¢) will be introduced into the output column
and hence into the derived program. This is the mechanism by
which recursive calls are introduced into the program.

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 695

Example (Recursion Formation)

We have applied the induction rule to the initial goal of the
front-last derivation, introducing the induction hypothesis

Example (Recursion Formation)

In the derivation of the rational square-root program, sup-
pose we have derived the assertion

Ifr<e,s

then if =0 = A)

then char{last{z)} A

(:- = [front(z) "‘13‘(m)_ L

This induction hypothesis contains occurrences of the func-
tion symbols front and last, which we are trying to compute.
Suppose we have also derived the following goal:

char{u) A

char(z2) A -
s=u. [fom]

s
—

U
N

Note that the boxed subterms of the two rows are unifiable,
with most-general unifier {%; — front(z), zo — last(z)}.
By application of the right-to-left version of the equality rule,
we obtain, after simplification, the goal

T<wsA
~{z=A)A
char(u) A

u- front(z) last(z)

char(last(z)} A

S=u-T1

By using the induction hypothesis, we have introduced the
terms front{z) and last(z} into the output column. This will
result in the formation of recursive calls in the final program.

The condition = <, s in the goal has the effect of ensuring
that these recursive calls will not cause a nonterminating
computation of the final program. If therc were an infinite
sequence of calls to either front or last, the corresponding
arguments would constitute an infinite sequence of strings
decreasing with respect to < ,; this would contradict the well-
foundedness of <, .

The condition —{z = A} in the goal guarantees that the
argument to the recursive calls is a legal input; i.e., that it
is nonempty.

The relation < 4, to be used in the proof has not been de-
termined; it may be any well-founded relation. 0

We illustrate recursion formation with another example.

if {x. v} < (r.€)

thenif v >0

{sgrijr.v))* <z A |_
=|{sgrt(r.v) + v)? < 7]

Lﬂx en

This is an immediate consequence of our induction hypothesis,
We have earlier obtained the goai

ifiz+e <r
i Er A + then =+«
Sliz+2¢)* < 7]
clse =

This was obtained by an application of the resolution rule in
a previous example. The boxed subsentences of the two rows
are unifiable, with most-general unifier {z — r, v — 2¢,
z « sqri(r,2¢e)}. By application of the resolution rule, we
obtain, after simplification, the goal

if (sqrt(r,2¢) + €)? <r

{r.2¢} <w{r.e} A

36> 0 then sqri(r.2¢) + ¢

else sgri{r. 2¢)

By using the induction hypothesis in the proof, we have
introduced three occurrences of the recursive call sqri{r, 2¢)
into the output column. The condition {r,2e} < ,,(r,€) in
the goal guarantees that these recursive calls do not lead to a
nonterminating computation. The condition 2¢ > 0 guarantees
that the arguments r and 2¢ of the recursive calls are legal
inputs; that is, 2¢ is positive. The well-founded relation < ,
is yet to be determined. a

K. Choice of a Well-Founded Relation

There are many well-founded relations that can serve as
the basis for an induction proof. Until the proof is well under
way, it may be difficult to determine which relation will be
most convenient to use. Rather than attempting to choose a
relation at the beginning of the proof, we prefer to start the
proof with an unspecifed relation <,,, so that we can discover
those properties the relation is required to satisfy.

We assume that a number of relations are given in advance
to be well-founded, with certain known properties. In addi-
tion, there are mechanisms for constructing new well-founded
relations from old ones, to satisfy certain propertics. When

696 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 18, NO. 8. AUGUST 1992

the required properties of the unspecified relation <. match
the properties of a known or constructed relation <., we can
choose < ., to be that relation < ,.

Example (Choice of a Well-Founded Relation)

In the theory of strings, the proper substring relation
= atring is given to be well-founded and known to have the
property that the tail of a nonempty string is its proper
substring; that is,

if =(y=4)

then | tail{y)~yringy |~

last(s) of s and the string front(s) of all but the last characier
of s. The specification is

find {zy. z2) such that
if ~{s =A)

then char(zz) As = z;3 * 23

{front(s),last(s)) <

in the theory of strings. Our initial goal is thus:

assertions goals fromi(sy | lasi(s)
1. if~(s=A) . -
then char(z2) A s = 21 % 22 -l ~2

In a derivation of frent-last, we obtain the goal

[fail(a) <o 3] * A

—{tail{s) = A)

head(s)-

fromt(tail(s)) | 'ostitail(s))

This suggests that we take the relation <, to be the proper
substring relation < ,¢ring. We can then apply the resolution
rule to these two rows, with most-general unifier {y — s}, to
obtain, after simplification, the goal

Als=A) A
=(tail(s) = A)

head(s)-

front(tail(s)) last{tail(s))

0

The setection of the well-founded relation may be regarded
as an extralogical step, to be performed by an external mech-
anism. Altematively, we can extend our theories to include
well-founded relations as objects. We may thenregard z <, ¢
as an abbreviation for < (w, T, y), where w is a variable that
ranges over well-founded relations. In the above resolution
step, when we unified tail(y) < sering ¥ With tail(s) <u s,
the unification algorithm would then include w — string as
a replacement in the most-general unifier. In other words, the
choice of the well-founded relation would be a byproduct of
the proof process. O

VI. EXAMPLES

In this section we give some examples of the derivation of
specific programs.

A. The Front-Last Derivation

We have not given all the rules in the system, but have
shown enough to illustrate a full derivation of the froni-
last program. This program, the reader will recall, is to find,
for a given nonempty string s, two outputs: the last character

Properties of the theory of strings, expressed as assertions, are
present in the initial tableau and will be mentioned as we use
them.

By the if-split rule, we may decompose our goal into its
antecedent and consequent

2. (s = A)

3. char{za) A

The output entries z; and z; have been dropped from the
row 2, because these variables do not occur free in the
assertion. We have annotated goal 3 in anticipation of a future
step.

1) The Base Case: By the equality rule, applied to an axiom
for concatenation,

([=31=)
and the most recent goal, with most-general unifier
{z1 — A,y — 2z}, we obtain the goal
4. char(z2) A
A z9
s=2z [T

Note that the first output entry has been instantiated.
By the resolution rule, applied to the reflexivity axiom

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 697

and the goa!, with most-general unifier {z — 3,20 + s}, we
obtain

5. char(s) A 5

Now both output entries have been instantiated. The intuitive
content of this row is that, in the case in which the input string
& consists of a single character, froni{s} may be taken to be
A, and last{s) to be s itself. This will lead to the base case
for the program we are constructing. Let us set it aside for a
while and turn our attention to the recursive case.

2) The Recursive Case: We have earlier developed the goal

3. char{z2) A

s=[zrz]

By the equality rule, applied to an axiom for concatenation,

if char(u)

then ([g v 2] = u- (o o)~

and the goal, with most-general unifier {z; — u- 1,22 — 32},
we obtain

G. char(u) A
char{yz) A u-yy 2

o= o

By the induction rule, applied as always to the initial goal,
we may assume the induction hypothesis

T ifT<us

then if o(z = A)

then char {last{z}) A

(: = Iironr(:r) * last(rﬂ)_

By the equality rule, applied right-to-left to assertion 7 and
goal 6, with most-general unifier {y; « front(z), y» +
last(z)}, we obtain the goal:

B, <8 A
~{r=A) A

char(u) A

char(last(z)) [t A

S=u-~r

- front(r) | last{x)

Note that, by use of the induction hypothesis, the recursive
calls front(z) and last(z) have been introduced into the
output columns.

We next apply the resolution rule, again to the induction
hypothesis and the goal. Because these rows have the vari-
able £ in common, we rename the variable in the induction
hypothesis:

T.ooifr <ws
then if ~(x' = A)

then |char(last(z'))[" A

' = front{z') * last(r")

Applying the rule, with most-general unifier {z' — z}, we
obtain

u - front(r)

S§=u-T L

fast(z)

By the resolution rule, applied to the decomposition property
for strings,

if oy = 4)
then [y = head(y) - tail(y) |~

and the goal, taking the most-general unifier {y ~ s,
u +— head(s),z + tail(s)} we obtain

10. a(s=A) A

[faflis) <w 5" A

Sftail{s) = A) A

head(s)-

last(tail{s))
front(tail(s))

char{hcad{s))

698

Note that at this stage the outpu! entries are fully instantiated.
11 remains to select the well-founded relation and to combine
the base case and the recursive calls.

3) Choice of a Well-Founded Relation: Let us assume that
we know the following property of the proper substring
relation ~{uring!

if ~(y=A)

Heernt | tail(y) <string ¥|”

By application of the resolution rule, taking <, to be < a¢ring
and laking the mosi-general unifier to be {y — s}, we obtain

11. ={s=A) A
Sftail(s) = A) A

char(head{s)) |+

head(s)-

front{tail(s)) last(tail(s))

This step has suggested that the well-founded relation be taken
to be the proper substring relation.

4) The Final Steps: By the resolution rule, applied to the
axijom

if s(y=4A)

then| char{head{y)) |~

and the goal, with most-general unifier {y — s}, we obtain

12. =(s=A}A head(s)- tast(tail(s))
—{tatl(s) = A)| T front(tail{s))

By the resolution rule, applied to the trichotomy property
of strings,

y=AVchar(y} v |-{tail{y) = A) |~

with most-general unifier {y — s}, we obtain

13 [E=AL A

=char(s)

head(s)-
front(tail(s))

last(tail(s))

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 8, AUGUST 1992

By the resolution rule, applied to our earlier assertion

> [=m-

and the goal, we obtain

head|s)-
front({tail{s))

last(tail(s))

Finally, by the resolution rule applied to this goal and the
one we set aside for the base case,

we obtain the goal

if char(s)
then A if char(s)
15. true else head(s)- then s

fronmt (tail{s)) else last(tail{s))

By this step, conditional terms have been introduced into our
program.

Because we have obtained the goal true with primitive
output entries, we can take this to be the final goal of our
tableau. The program we extract from the proof is

(if char(s)

then A

| else head(s) - front(tail(s))
(if char(s)

last(s) « ¢ then s

front(s) « J

| else last(tail(s)).

B. The Final Square-Root Program

We do not give the full derivation for the square-root
program we have been using as an example; it is described
in Manna and Waldinger [27]. The final program we obtain
is

if maz(r,1) <e

then 0

else if (sqri(r, 2¢) + ¥ <r
then sqri(r,2¢) + ¢

sqrt(r,e) <

else sgri(r, 2¢).

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 699

Let us explain this somewhat odd program, because it illus-
trates a more general phenomenon.

Recall that the program is intended to find a rational
approximation sqri(r,¢) that is within ¢ less than the exact
square root of r; that is, /7 is to belong to the half-open
interval [sqrt{r,€), sqrt(r, €) + €).

In the case in which the error tolerance is quite large, that
is, maz(r, 1) < e, it turns out that r < €, that is, /7 belongs
to the interval [0,¢) and, hence, that 0 is a good enough
approximation to the square root of r.

Otherwise, we double our error tolerance and recursively
find an approximation sqrt(r,2¢) that is within 2¢ less than
the square root of ; that is, /r belongs to the interval
[sqrt(r, 2¢), sqrt(r, 2¢) + 2¢). The program then asks whether
(sqrt(r,2¢) + €)° < r, that is, whether /7 is in the right or
the left half of our interval.

In the case in which /7 is in the right half [sgrt(r,2¢)} + ¢,
sqgri(r.2e) + 2¢), we can take sqri(r,2¢) + € to be our
approximation to the square root; it is certain to be within
¢ fess than /7.

In the alternative case, in which /7 is in the left half
[sqrt{r, 2¢}, sqrt(r, 2e)+¢€), we can take sqrt(r, 2¢) itself to be
our approximation. In either case, the conditional expression
will yield an approximation within ¢ less than /7.

This recursive program uses a binary-search technique,
but it does not resemble conventional iterative binary-search
algorithms. Usually, a binary-search algorithm will begin with
a very large interval containing the desired output. It will
divide the interval in half at each iteration, and will retain
the half that contains the output. The process continues until
the interval is sufficiently small; that is, shorter than a given
error tolerance.

Rather than dividing an interval in half at each iteration, our
derived program doubles its error tolerance at each recursion,
until the tolerance is quite large. At this point, it can form a
large interval that contains the desired output. As it unwinds
from the recursion, it implicitly divides this interval in half,
just as a conventional algorithm does, Similar recursive binary-
search programs may be obtained for division and other
numerical problems.

This program was first derived by purely formal manip-
ulation of the rules of the system, to explore the search
space, without any expectation of finding a program of this
form. When the program was obtained, we did not under-
stand it and though! we had made anm error in the deriva-
tion.

The program as derived is quite inefficient, since it
contains several occurrences of the same recursive call
sqrt(r,2¢). These can be replaced by a single recursive call
by ordinary elimination of common subexpressions. More
sophisticated program transformation techniques [16] have
been applied to transform the program into a lingar iterative
form.

C. The Slowsort Program

Another example of a program obtained by formal manip-

ulation is this sorting program obtained by Traugott {45}

(if {={)
then ()
else {f tail(l) = {}
then!
else if head(l) < head(sort(tail(l)))
then head(l} - sort(taii(l))
else head(sort(tail(l)))-
sort(head(l) - tatl{sort(tail(l))}).

sort{l) < <

.

Here, ! is a list of numbers, and () is the empiy list. No
particular claims are made for the efficiency of this program;
for exampie, to find the minimum element of tazl(f), the
program sorts it and throws away all but the first element. The
program is unusual in that it sorts the list without invoking
any auxiliary programs, just basic list-processing primitives.

Traugott derived other sorting programs with this property
as well. He also considered the relationship between the proof
strategy and the form of the extracted program.

VII. SUBPROGRAMS

Once we have derived a program f, we can use it as a
subprogram in future derivations. We do this by including in
the tableau for these derivations an assertion stating that the
derived program f does indeed meet its specification.

More precisely, suppose we have derived a program f(a) «
t
to meet a specification

fla} < find z such that Qla, z].

Then in the initial tableau for the derivation of a new program
g, we may include the assertion

(¥)Qla. f(z}]

which states that f does satisfy its specification. If this
assertion is used in the proof, the new program g may invoke
the earlier program f. The function symbol f is included in
the primitive list for the derivation of g.

If we choose, we may include the program f itself as an
assertion in the derivation for g. That is, we may include the
assertion:

(v 2)[flr)=1]

N

in the initial tableau for g. If we do this, we have lost a certain
degree of modularity, because the program for g may depend
on the particular implementation for f. We thus are no longer
free to replace the program for f with a different program
meeting the same specification.

i IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. § AUGUST 1992

A. Program Transformation

Al this point we illustrate both the formation of subpro-
grams and the application of deductive methods to program
transformation problems.

We suppose we are given a program

if s={)

reverse(s) < ¢ then s

else reverse(tail(s)) * head(s)

for reversing the characters of a given string s. The program
is inefficient because, in executing successive recursive calls
to reverse, it will be computing the concatenation function
many times.

To transform a given program, we may regard that program
as the specification for a new program. For this example, the
new specification is

reversel(s) < find z such that z = reverse(s).

Of course, the reverse program iiself will satisfy this specifi-
cation, but different derivations will yield different programs,
some of them more efficient than others.

Looking ahead, the particular program we shall derive is

reversel(s) < reverse2(s,A)

where
ifs=A
thent

else reversef(tail(s),
head(s) - t).

reverse2(s,t) «

The auxiliary subprogram reverse2(s,t) may be regarded
as a generalization of reverse. It meets the specification

reverse2(s,t) « find z such that z = reverse(s}*t.
In other words, it reverses s and concatenates the resuit with
t. To complete the derivation of reversel, it is necessary to
derive reversel.

B. Derivation of Reverse2

We will not give the full derivation of reverse2, but will
present those steps relevant to our present discussion.
We begin with the initial tableau

assertions goals reverse2(s,t}

7 =reverse(s)»t B

The function symbols reverse and are excluded from the
primitive list, so that they may not occur in the derived
program. By the well-founded induction rule, we may assume
the induction hypothesis

if (. y) <y {s.1)

then reverseZ(z,y) = | _

reverse(r)* y

From our initial goal, the definition of reverse, and some
properties of strings, we eventually obtain the goal

(s =A) A

: = reversc(tail{s)) »| 4

{head(s)- 1)

The boxed subsentences of the assertion and the goal unify,
with most-general unifier {z — iail(s), y — head(s) -t,
z — reversef(tail(s), head(s) - t)}. By the resolution rule,
we obtain

{tail{s), head(s) - t) <
wi{s.) A

-(s = A) reverse2(tail(s), head(s) - t)

Use of the induction hypothesis has accounted for the intro-
duction of the recursive call reverse2(tail(s), head(s)-t) into
the output entry and, ultimately, into the reverse2 program.

C. Derivation of Reversel

Once we have derived reverse2, the derivation of the
program reversel is simple. We begin with initial tableau

assertions goals reversel(s)

We may include in our tableau the asseriion that, for all = and
y, the program reverse2(z,y) does meet the specification
from which it was derived:

reversel(r, y) =

We assume that we have the following property of concate-
nation:

~—
s
»
=
]
A
p——
1

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 701

By the equality rule applied to this and the previous assertion,
with mosl-general unifier {f «— reverse(z), ¥ — A}, we
obtain

[reverse(z. A) = reverse(z)] =

By the resolution rule, applied to this assertion and the initial
goal, with most-general unifier {z — s. z — reverse2(s,A)},
we obtain the final goal

true reverse2(s.A) |

_ il

From this proof, we extract the program

reversel(s) <= reverse2(s,A).

D. The Need for Generalization

This derivation illustrates a phenomenon in program syn-
thesis that reflects a corresponding observation in theorem
proving. It has been remarked that, in proving a theorem
by induction, it is often necessary to prove a more general
theorem so as to have the benefit of a more general induction
hypothesis. (This fact has been exploited by the Boyer—Moore
theorem prover [5].) Similarly, in deriving a program, it is
sometimes necessary to derive a more general program so as
to have the benefit of a more general recursive call.

To illustrate this phenomenon, let us see what would have
happened had we begun the derivation of the reverse!
program without first deriving reverse2. We begin with the
goal

assertions goals reversel (s)

z = reverse(s) z

By the well-founded induction rule, we may assume the
induction hypothesis

ifr<es
then [reversel{z) = reverse(z)|~

As in the derivation of the reverse2 program, we may
obtain, from the initial goal, the definition of reverse, and
properties of strings, the new row

~{s=A) A
[z = reverse(tail(s)) « head{s)]

This time, however, the boxed subsentence of the goal fails to
unify with the boxed subsentence of the induction hypothesis,
Because the specification for reversel is less general than
the specification for reverse2, its induction hypothesis is also
less general: in fact, the induction hypothesis is not general
enough to unify with the desired goal.

E. Motivation for Generalization

In our successful derivation for reversef, we have assumed
that we were clever enough to first derive reverse2. If
we were not given the specification for reverse2, could
we, or perhaps a system, be led to discover it? In general,
automatic generalization of this sort is a difficult problem. We
speculate that appropriate generalizations may be discovered
by observing regularities in the structure of a derivation
attempt.

For example, in the attempted derivation of reversel
(assuming that reverse2 has not yet been developed), we
begin with the goal

z = reverse(s)
and obtain the subsentence

z = reverse(tail(s)) * head(s).
If we apply the same steps to this subsentence, as we did to
the original goal, we obtain the subsentence

z = reverse(tail(tail(s))) head(tail(s)) * head(s.)
If we can observe the regularity in these goals, we may
be inspired to construct a subprogram to satisfy instead the
input—output condition:

z = reverse(3) * i.
This is the specification for the auxiliary subprogram
reverse2. Each of the above three subsentences is equivalent
1o an instance of this condition, taking § to be s.tail(s),
and tail(teil(s)), respectively, and { to be A, head(s), and
head(tail(s)) * head(s), respectively.

Some generalizations, however, are more difficult to moti-
vate. For example, in the derivation of a unification algorithm
[24], [32], we begin with a specification

[find 6 such that
"e10 = el A
if e1¢p = ea
vé)
]

unify(er, ez) <= < then (I\)[¢ = 0

v
[(Y¢)(e1¢ = e29) A
L | 6 = nil ‘

In other words, we wish the program 10 return a substitution #
that is a unifier of e; and ey, and that is more general than any
other unifier ¢. In the case in which e; and e are not unifiable,
the program is to return the special object nil, which is not
a substitution.

702 [EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 18. NO. 8, AUGUST 1992

The details of this derivation are outside the scope of this
discussion. For our derivation proof to succeed, we found
it necessary to add to the first disjunct of the specification
the new condition #6.= # that is, & is idempotent under
composition. Nonidempotent most-general unifiers are unin-
tuitive; for example, {z «— y} and {y — =z} are idempotent
most-general unifiers of r and g, but {z ~ z, ¥ — 2,
z «— z} is a nonidempotent most-general unifier. On the other
hand, idempotence had not been studied in connection with
unification, so we were surprised to require its introduction into
the specification. (Idempotence has been studied independently
in the work of Eder [11].)

VIIl. SPECIALIZED INFERENCE RULES

Progress in program synthesis depends on the development
of techniques for automated deduction, both interactive and
automatic. The inference rules we have introduced so far are
very general: they apply to proving theorems in any theory.
If we are satisfied with a more specialized system, one which
is competent in a particular theory, such as the sirings, we
may be able to devise more powerful inference rules whose
applicability is limited to that theory. Such rules may be able
to achieve in a single step inferences that would otherwise
require several steps.

The first benefit of this is to shorten proofs. This is a clear
advantage in an interactive system, in which each step of the
proof requires some effort on the part of the user. For an
automatic system, a shorter proof may be an advantage if it can
be found more easily. Because introducing new inference rules
gives us more choices at each stage, it can actually increase the
search space. Although the proof is shorter, it may be more
difficult to discover.

A new inference rule may pay for itself, however, if,
in addition to shortening the proof, it allows us to discard
from the initial tableau some assertions that represent valid
properties of the theory. We can do this only if the rule
has certain completeness properties, which guarantee that in
discarding the assertions we are not losing any opportunity to
complete a proof. If so, the rule may reduce the number of
choices at each stage and hence contract the search space.

A. Associative-Commutative Unification and E-Unification

One way to increase the power of an inference rule is to
extend the unification algorithm to take the properties of the
theory into account. For example, the associative and commu-
tative properties of operators, such as the addition and multipli-
cation functions in the theories of numbers or the conjunction
and disjunction connectives in any logical theory, may be
incorporated into an associative-commutative (AC) unification
algorithm [43]. While the ordinary unification algorithm would
not be able to unify the two terms a+ (x + b) and {¢ + a) +§,
the AC algorithm would, returning the unifier {z — c}.

Completeness results for the algorithm have been estab-
lished; that is, if the algorithm is adopted, we may discard
the associativity property:

u+rv)+w=u+(v+w)

and the commutativity propery:
utv=v+u
from the initial tableau.

Unlike ordinary unification, which always returns a single
most-general unifier, the AC unification algorithm may return
a finite number of distinct unifiers. For example, for an
associative-commutative function f, the result of unifying the
two terms f(a.z) and f(b,y) can be either {z — b,y — a}
or {z — f(b,u), y — f{a,u)}, where u is a new variable.

Special unification algorithms have been devised [39] for
treating operators with various combinations of properties,
including associativity, commutativity, identity, and idempo-
tence. More general E-unification algorithms {e.g., [12]) treat
operators with properties defined by a set of equations supplied
by the user. Some of these algorithms produce multiple most-
general unifiers, or even an infinite stream of unifiers; some are
not guaranteed to terminate, whether they produce an infinite
stream or not.

B. Sorted Unification

Some unification algorithms have been devised for dealing
with sort relations; these are the unary relations, such as
integer (x}, string (z}, or char(z), that serve to categorize
our set of objects. Sorted unification algorithms (e.g., [38])
allow us to provide a declaration that associates a particular
sort relation with each variable and term. Thus we might
declare that £ is of sort inieger and s is of sort siring.
The sorted unification algorithm will produce only replacement
pairs & — ¢ such that = and { are of the same sort.

An advantage of using sorted unification is that we can drop
from our assertions and goals all subsentences p(t), where p
is a sort relation. For instance, if we have declared z to be of
sort siring and y to be of sorl integer, the sentence

(Vz)(3n)g{z, y)
will be understood to mean

if string{z)
then (Jy)[integer(y) A qlz.u)]

Some assertions may disappear completely. Use of sorted
unification has achieved dramatic reduction of the search space
for some problems.

Extended unification algorithms may replace ordinary unifi-
cation in the resolution and other inference rules of a deductive
system. Where the algorithm may return multiple unifiers or
fail to terminate, the control for the rule must be adapted
accordingly.

C. Special Inference Rules

Another way to specialize a deduction system to a partic-
ular theory is to introduce entirely new inference rules. We
have already seen how paramodulation (our equality rule)
allows us to give special treatment to the equality relation,
and thereby eliminate such axioms as transitivity and the
functional-substitutivity of equality from our initial tableau.
Manna and Waldinger [26] (and, with Stickel, [22]) introduce
an analogous rule for dealing with ordering relations; adopting
this rule allows us to pgive special treatment to the ordering

MANNA & WALDINGER: FUNDAMENTALS OF DEDUCTIVE PROGRAM SYNTHESIS 03

relaion. Bledsoe and Hines give special inference rules for
real numbers [4] and set theory [18].

We have seen that we can specialize a rule to a particular
theory or subtheory if we have a special unification algorithm
for that theory. Stickel [44] has shown that we can also
specialize a rule if we are given a procedure for determining
the validity of sentences in a subtheory. The specialized rule
can then be used to perform derivations in a combination of
the subtheory with other theories.

For example, suppose we have two goals

where > is a total reflexive relation. The ordinary resolution
rule cannot be applied, because the boxed subsentences are
not unifiable. if, however, we have a procedure capable of
determining that, if z; is taken to be q, the disjunction of the
instances

a-bvbra

is valid in the total refiexive theory, then the theory resolution
rule is able to deduce the final row

ifard
true then a

else b

Stickel formulates completeness resulis that allow us to
remove axioms from the initials tableau, such as the totality
axiom

urvVYru

Analogous theory extensions may be formulated for the equal-
ity rule and other inference rules. Such rules have been found
to achieve sizable reductions in the search space.

IX. DISCUSSION

There are, of course, many aspects of program synthesis
that have not been discussed in this paper, both because of
space restrictions and because many of these topics are still
being developed.

We have limited ourselves to discussing the synthesis of
applicative programs, which return an output but produce
no side effects. Some work on the deductive synthesis of
Imperative programs, which may alter data structures and
produce other side effects, is discussed in [28]. We have also
disregarded the synthesis of concurrent, real-time, and reactive
programs, which may interact with their environments (e.g.,

[35])-

We have considered specifications only in the form of first-
order input—output relations. In general. it is necessary lo
deal with higher-order specifications that describe properties
other than input—outpul relations. For example, if we are
construcling a pair of programs, we should be able to say
that one is the inverse of the other.

We have for the most pari ignored the efficiency of the
programs we construct; in facl, automatically synthesized
programs are often wantonly wasteful of time and space. One
way of treating this is to include performance criteria as part
of the program’s specification; the synthesized program would
then be forced to meet these criteria. Another approach is to
mainitain a crude performance estimate for each output entry, in
a separaie column. Performance estimates could be taken into
account in directing the search for a program. Furthermore,
once a program was constructed, the search could continue
for programs with better performance estimates, based on a
better algorithm or data structure, for instance.

Finally, we have concentrated on program synthesis {o the
exclusion of the use of deductive techniques in collaboration
with other software production methods; e.g., deductive test-
ing, debugging, verification, modification, and maintenance.

At present, progress in program synthesis is limited: by
the power of automated proof systems. Derivation proofs are
an appealing and challenging area of application for both
automatic and interactive theorem proving.

For automatic systems, program synthesis has an advantage
over mathematics as an application area. To make a contribu-
tion to mathematics, a system must be able to prove theorems
that a human mathematician cannot. For this reason, theorem-
proving systems such as Argonne’s [21] have had their greatest
successes in areas in which human intuition is weak, such as
combinatory logic and ternary Boolean algebras, so that the
machine can compete on a more equal footing. For program
synthesis, there is great utility in a system that can reliably be
expected to prove routine and mathematically naive results,
because from these results we can extract correct programs.
The challenge is that many such proofs are still outside the
reach of current automatic deductive technology.

To construct an interactive, rather than an automatic, pro-
gram synthesis system is closer to an engineering feat today.
Such a system relies on human intuition to guide the upper
levels of the proof search, but itself completes the automatable
details. Errors in human guidance may delay the discovery of
a program, but never cause the System to construct an incorrect
program. The challenge in designing an interactive system is
10 phrase the interaction in terms thai the human guide can
understand.

REFERENCES

{1] P.B. Andrews, “Theorem proving via general matings,” /. ACM, vol. 28,
no. 2, pp. 193-214, 1981.

[2] W.Bibel, “Matings in matrices,” Contmun. ACM, vol. 26, pp. 844-852,
1983,

{3] R. M. Burstall and J. Darlington, "A transformation system for devel-
oping recursive programs,” J, ACM, vol. 24, no. 1, pp. 44-67, 1977

[41 W.W. Bledsoe and L. Hines, “Variable climination and chaining in a
resolution-based prover for inequalities,” in Proc. Sth Conf. on Auto.
Deduction, 1980, pp. 281-292

704

[5)
16l
7
(8}
(91
(109
(1]
[12)

[13]

(14]

[13]

[16]

[17]
(18]
[19]

[20]
f21]
(22]

[23]

[24]

[25]

[26)
127]
(28)

(29]

[30)

(31]
[32]
(33]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. B, AUGUST 1992

R.S. Bover and 1.5. Moore, A Compuiational Logic. New York:
Academic Press, 1979,

R. Burback, et al., “Using the deductive 1ableau system,” in Macintosh
Educational Safiware Collection, Chario1 Software Group, 1990.

R. Consable et al, Implementing Mathematics with the NuPr! Proof
Development System. Englewood Cliffs, NI: Prentice-Hall, 1986.

T. Coquand and G. Huet, “The calculus of constructions,” fnforn
Conir,, vol. 76, nos. 213, pp. 95-120, 1988,

N. Dershowitz, The Evoluiion of Programs. Boston, MA: Birkhduser,
1983,

E. Dijkstra, A Discipline of Programming. Englewood Cliffs, NI:
Prentice-Hall, 1976.

E. Eder, “Propertics of substitutions and unifications,” J. Symbelic
Comput., vol. 1, pp. 31-46, 1985.

M. Fay, “First-order unification in an equational theory,” in Proc. 4ih
Conf. on Auto. Deduction, 1979, pp. 161 -167.

A. Feity and D. Miller, “Specifying theorem provers in a higher-
order logic programming language,” in Proc. 9th im. Conf. on Auro.
Deduction, 1988, pp. 61-80.

M. 1. Gordon, A.l1. Milner, and C.P. Wadsworth, Edinburgh LCF: A
Mechanised Logic of Computation. Berlin: Springer-Verlag, 1979.

1. Guuag and J. Homing, “Formal specification as a design tool,” in
Proc. 7th ACM Symp. on Principles of Program. Languages, 1980,
pp. 251-261.

P. Harrison and H. Khoshnevisan, “Efficient compilation of linear
recursive functions into object-level loops,” in Proc. SIGPLAN '86 Sym.
on Compiler Constructions, 1986, pp. 207-218.

S. Hayashi and H. Nakano, PX: A Compuiational Logic. Cambridge,
MA: MIT Press, 1988. .

L. Hines, “Str+ve C: the Sir+ve based subset prover,” in Proc. 10th
int. Conf. on Auto. Deduction, 1990, pp. 193-206.

D. Kapur and P. Narendran, *“An equational approach to theorem proving
in the first-order predicate calculus,” Proc. 9% Int. Joint Conf. on Art.
Imell., 1985, pp. 1146-1153,

R. Kowalski, “Predicate logic as a programming language,” in Proc.
{FIP Congress '74, pp. 569—544.

W. W, McCune, “OTTER 2.0 users’ guide,” Math. and Compul. Sci.
Div., Argonne Natl. Lab., 1990.

Z. Manna, M. Stickel, and R. Waldinger, “Monotonicity properties in
automated deduction,” in Artificial Intelligence and Mathemarical The-
ory of Computation: Papers in Honor of John McCarthy, V. Lifschitz,
Ed. New York: Academic, 1991, pp. 261280,

Z. Manna and R. Waldinger, “A deductive approach to program synthe-
sis,” ACM Trans. Program. Languages Syst., vol. 2, no. 1, pp. 90-121,
1980.

Z. Manna and R. Waldinger, “Deductive synthesis of the unification
algorithm,” Sci. Comput. Program., vol. 1, pp. 5-48, 1981.

Z. Manna and R. Waldinger, The Logical Basis for Computer Program-
ming, vol. 1, Deductive Reasoning. Reading, MA: Addison-Wesley,
1985,

Z Manna and R. Waldinger, “Special relations in automated deduction,”
J. ACM, vol. 33, no. 1, pp. 1-59, 1986.

Z. Manna and R. Waldinger, “The origin of a binary-search paradigm,”
Sei. Comput. Program., vol. 9, pp. 37-83, 1987,

Z. Manna and R. Waldinger, “The deductive synthesis of imperative
LISP programs,” in Proc. 6th AAAl Nat. Conf. on Art. lniell, 1987,
pp- 155=160.

Z. Manna and R. Waldinger, The Logical Basis for Computer Pro-
gramming, vol. 2, Deductive Systems. Reading, MA: Addison-Weslcy,
1990.

P. Mantin-Lof, *Constructive mathematics and computer programming,”
in Proc. 6th Imt. Cong. for Logic, Methed., and Phil. of Sci,, 1982,
pp. 153-175.

N. Murray, “Completely nonclausal theorem proving,” Art. Imell, vol.
18, no. 1, pp. 67-85, 1982,

D. Nardi, “Formal synthesis of a unification algorithm by the deductive-
tableau method,” J. Logic Program., vol. 7, pp. 1-43, 1989,

B. Nordstrém, K, Petersson, and J. M. Smith, Programming in Mariin-
Léfs Type Theory: An Introduction. New York: Oxford Univ, Press,
1990.

[34} L.C. Paulson, “The foundation of a generic theorem prover,” J, Auro.
Reason., vol. 5, no. 3, pp. 363398, 1989.

[35] A. Pnucli and R. Rosner, “A framcwork for the svnthesis of reactive
modules,” in Proc. Concurency '88, 1988, pp. 4-17.

[36] J.A. Robinson, “A machine-oriented logic based on the resolution
principle,” J. ACM, vol. 12, no. 1, pp. 23-41, 1965.

{37] M. Sato, “Towards a mathcmatical theory of program synthesis,” in
Proc. 6th [nt. Joint Conf. on Are. Imell, 1979, pp. 757-762.

{38] M. Schmidi-Schauss, “Compurational aspects of an order sorted logic
with term declarations,” Universitit Kaiserslautern, SEKI Rep. SR-
8810, 1988,

[39] 1. Siekmann, “Unification theory,” J. Symbolic Comput., vol. 7, nos. 3/4,
pp. 207-274, 1989.

[40] D.R. Smith, “Top-down synthesis of divide-and-conquer algorithms,”
Are Ineell., vol. 27, no. 1, pp. 43-96, 1985.

[41] N. Shankar, “Checking the proof of Gadel's incompleteness theorem,”
Instit. Compul, Sci., Univ. Texas at Austin, 1985.

[42] E. Shapiro, Algorithmic Program Debugging. Cambridge, MA: MIT
Press, 1983,

[43]) M.E. Sticke!, “A unification algorithm for associative-commutative
functions,” J. ACM, vol. 28, no. 3, pp. 423-434, 1981.

[44] M.E. Stickel, “Automated deduction by theory resolution,” J. Auto.
Reasen., vol. 1, no. 4, pp. 333-355, 1985.

[43] 1. Traugott, “Deductive synthesis of sorting programs,” J. Symbolic
Comput., vol. 7, pp. 533-572, 1989.

[46] L.Wos and G. Robinson, “Paramodulation and theorem proving in first-
order theories with equality,” in Machine Intelligence 4, B. Meltzer and
D. Michie, Eds. New York: Elsevier, 1969, pp. 135-150.

[47] L. Wos and S. Winkler, “Open questions solved with the assistance of
AURA," in Awtomated Theorem Proving: After 25 Years, W. W. Bledsoe
and D. W. Loveland, Eds. Providence, RI: Ameri. Math. Soc., 1983,
pp. 73—88.

Zohar Manna received the B.S. and M.5. degrees
in mathematics from the Technion in Israel and the
Ph.D. degrec in computer science from Carnegie-
Mellon University.

He is a Professor of computer science at Stanford
University and at Weizmann Institule, Isracl. He
is the author of the textbook Mathematical Theory
of Compuiation (McGraw-Hill), the co-author of
the two-volume textbook The Logical Basis for
Computer Programming (Addison-Wesley), and the
cc-author of the texibook The Temporal Logic of
Reactive and Concurrent Systems: Specification(Springer-Verlag). He is an
agsociate editor of the Journal of Symbelic Computation, Acta Informatica,
and Theoretical Computer Science Journal. His rescarch interests include
formal approaches lo the specification, verification, and rigorous development
of reactive and real-time systems, using the t00ls of automated deduction,
temporal logic, and automata theory.

Richard Waldinger reccived the A.B. degree
in mathematics from Columbia College in 1964,
and the Ph.D. degree in Computer Science from
Camegie-Mellon University in 1969,

He is a Principal Scientist of the Anificial
Intelligence Center at SRI Inlernational and Con-
sulting Professor of Computer Science at Stanford
University. His research inferests include the
application of antomated deduction to problems in
software engineering and antificial intelligence. He
is coauthor, with Z. Manna, of The Logical Basis
for Computer Programming.

